Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
HS lớp 7 mà ko biết làm bài này người ta nói nó là thằng thiểu năng
a) |2x+1/3|=1/2
\(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{3}=\frac{1}{2}\\2x+\frac{1}{3}=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{6}\\2x=\frac{-5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{12}\end{cases}}\)
b) |1-1/2x|=1/3
\(\Rightarrow\orbr{\begin{cases}1-\frac{1}{2}x=\frac{1}{3}\\1-\frac{1}{2}x=\frac{-1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=\frac{2}{3}\\\frac{1}{2}x=\frac{4}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{8}{3}\end{cases}}\)
c) |3x+1|=1/5
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{5}\\3x+1=\frac{-1}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}3x=\frac{-4}{5}\\3x=\frac{-6}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{9}\\x=\frac{-2}{5}\end{cases}}\)
d) |x-1/2|+1=5/3
|x-1/2|=5/3-1
|x-1/2|=2/3
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{2}{3}\\x-\frac{1}{2}=\frac{-2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{-1}{6}\end{cases}}}\)
\(\left|3x-1\right|=\left|2x+5\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)
Vậy x = 1, \(y=\frac{1}{3}\),z = -2
a) \(2\left|2x-3\right|=\frac{1}{2}\)
\(\left|2x-3\right|=\frac{1}{2}:2\)
\(\left|2x-3\right|=\frac{1}{4}\)
\(\orbr{\begin{cases}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{13}{4}\\2x=\frac{11}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{8}\\x=\frac{11}{8}\end{cases}}\)
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(\orbr{\begin{cases}5-2x=4\\5-2x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
còn lại mk chịu