Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, D={1; 2; 3; 6}
b, B={-4; -3; -2; -1; 0; 1; 2; 3; 4}
c, C={-3; -2; -1; 0; 1; 2; 3}
a, \(x\in\left\{1,2,3,4,6,8,12,24\right\}\)
b, \(x\in\left\{-3,-2,-1,0,1,2,3,4\right\}\)
c, \(x\in\left\{-3,-2,-1,0,1,2,3\right\}\)
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)
để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3
suy ra n-1 thuộc -3;-1;1;3
suy ra n thuộc -2;0;2;4
b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)
để n+10 là bội của n-1 thì 11 phải là bội của n-1
suy ra n-1 thuộc -11;-1;1;11
suy ra n thuộc -10;0;2;12
gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé
c/ gọi ba số đó là n-1;n;n+1
ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z
vậy tổng 3 số liên tiếp luôn chia hết cho 3
nhớ k cho mình nhé ^.^
Ta có : 3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3(n - 1) + 3 chia hết cho n - 1
<=> 3 chia hết cho n - 1
<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Có x . y = 7 . 1
x . y = 7
suy ra x hoặc y là ước của 7
mà ước của 7 = 1 , 7 , -1 , -7
suy ra x = 1 thì y = 7
x = -1 thì y = -7
x = 7 thì y = 1
x = -7 thì y = -1
ta có : 7.1 = xy
=> xy = 7 = 1.7 = (-1).(-7)
Vậy: (x,y) \(\varepsilon\) {(1,7);(7,1);(-1,-7);(-7,-1)
Đặt \(A=\frac{x^2+2x-1}{x-1}\)
Ta có:\(A=\frac{x^2+2x-1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
Vậy để A nguyên thì x thỏa mãn mõi số nguyên
chịu chưa học lớp 6