Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
a, 7/5 : x + 3/2 = 16/3
7/5 : x = 16/3 - 3/2
7/5 : x = 23/6
x = 7/5 : 23/6
x = 42/115
b, x : 1/5 + 1/7 = 3/5 . 18/21
x : 1/5 + 1/7 = 18/35
x : 1/5 = 18/35 - 1/7
x : 1/5 = 13/35
x = 13/35 . 1/5
x = 13/175
c, x - 1 và 1/3 : 2 = 5/7
x - 4/3 : 2 = 5/7
x - 4/3 = 5/7 . 2
x - 4/3 = 10/7
x = 10/7 + 4/3
x = 58/21
d, x + 2 và 3/5 . 1/6 = 35/36
x + 13/5 . 1/6 = 35/36
x + 13/5 = 35/36 : 1/6
x + 13/5 = 35/6
x = 35/6 - 13/5
x = 97/30
e, ( x + 3/2 ) : 2 = 7/10 + 1/5
( x + 3/2 ) : 2 = 9/10
x + 3/2 = 9/10 . 2
x + 3/2 = 9/5
x = 9/5 - 3/2
x = 3/10
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
đề chính xác là
a/ \(13-2\times\left(36-5\times x\right)=1\)
b/ \(53-10\times\left(40-7\times x\right)=3\)
c/ \(\frac{3}{4}-\frac{1}{6}\div x=0,375\)
\(P=\frac{1}{5x8}+\frac{1}{8x11}+.....+\frac{1}{602x605}\)
\(\Rightarrow3P=\frac{3}{5x8}+\frac{3}{8x11}+......+\frac{3}{602x605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.....+\frac{1}{602}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{24}{121}\)
\(\Rightarrow P=\frac{24}{121}:3\)
\(\Rightarrow P=\frac{8}{121}\)
Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)
\(\frac{1}{x}=\frac{1}{2}\)
=> x = 2
a) \(\frac{x\div3-16}{2}+21=38\)
\(\frac{x\div3-16}{2}=38+21\)
\(\frac{x\div3-16}{2}=59\)
\(x\div3-16=59.2\)
\(x\div3-16=118\)
\(x\div3=118+16\)
\(x\div3=134\)
\(x=134.3\)
\(x=402\)
b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{2}\)
Vậy x = ....
Ta co \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+....+\frac{2}{x\cdot\left(x+1\right)}\)
\(\Rightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\cdot\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\)\(2\cdot\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\)\(2\cdot\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(x=17\)
1/2`2+1/3`2+1/4`2+...+1/n`2<1