K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

\(\frac{1}{2013}x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012.2013}=2\)

\(\frac{1}{2013}x+1+(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013})=2\)

\(\frac{1}{2013}x+1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)=2\)

\(\frac{1}{2013}x+1+\left(1-\frac{1}{2013}\right)=2\)

\(\frac{1}{2013}x+1+1-\frac{1}{2013}=2\)

\(\frac{1}{2013}x-\frac{1}{2013}+2=2\)

\(\frac{1}{2013}.\left(x-1\right)=2-2\)

\(\frac{1}{2013}.\left(x-1\right)=0\)

=> x - 1 = 0

x = 1

11 tháng 7 2018

\(\frac{1}{2013}x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012.2013}=2\)

\(\frac{1}{2013}x+\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)=2\)

\(\frac{1}{2013}x+\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)=2\)

\(\frac{1}{2013}x+\left(1-\frac{1}{2013}\right)=2\)

\(\frac{1}{2013}x+\frac{2012}{2013}=2\)

\(\frac{1}{2013}x=2-\frac{2012}{2013}\)

\(\frac{1}{2013}x=\frac{2014}{2013}\)

\(x=\frac{2014}{2013}:\frac{1}{2013}\)

=> x=2014

21 tháng 3 2019

 b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow\)\(x+1=2015\)

\(\Rightarrow x=2014\)

21 tháng 3 2019

a, 2/3x -3/2.x-1/2x=5/12

    x.(2/3-3/2-1/2)=5/12

                 x. -4/3=5/12

                          x=5/12:-4/3

                          x=-5/16

b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015

   2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015

   1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015

                                                1/2(1-1/x+1)=2013/2015

                                                 1-1/x+1=2013/2015 : 1/2

                                                  1-1/x+1=4206/2015

                                                      suy ra đề sai

                                                

                                                       

23 tháng 8 2019

1) Tính : 

a) \(\left(2008.2009.2010.2011\right).\left(1+\frac{1}{2}:\frac{2}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).\left(1+\frac{1}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).0\)

\(=0\)

2) Tìm x 

a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

b) \(\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}.\frac{1}{6}.\left(x-1,010\right)=\frac{1}{360}-\frac{1}{720}\)

\(\Rightarrow\frac{1}{2.3.4.5.6}.\left(x-1,01\right)=\frac{1}{720}\)

\(\Rightarrow\frac{1}{720}.\left(x-1,01\right)=\frac{1}{720}\)

\(\Rightarrow x-1,01=\frac{1}{720}:\frac{1}{720}\)

\(\Rightarrow x-1,01=1\)

\(\Rightarrow x=1+1,01\)

\(\Rightarrow x=2,01\)

I don't now

mik ko biết 

sorry 

......................

25 tháng 7 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{x-1}{2x+2}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2011}{2013}\)

\(\Rightarrow x-1=2011\Leftrightarrow x=2010\)

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

5 tháng 5 2016

2/6+2/12+2/20+...+2/x.(x+1)=2013/2015

2.[1/6+1/12+1/20+...+1/x.(x+1)]=2013/2015

1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2013/4030

1/2-1/3+1/3-1/4+...+1/x-1/x+1=2013/4030

1/2-1/x+1=2013/4030

1/x+1=1/2015

=> x+1=2015

     x=2014

Vậy x=2014

5 tháng 5 2016

Đặt A=Vế trái

Ta có :

\(A \over 2 \)\(= \)\({1\over 6 } +{1\over 12 }+{1\over 20 }+...+{1\over x(x+1)}\)

   =\({1\over 2}-{1\over 3}+{1\over 3}-{1\over 4}+{1\over4}-{1\over 5}+...+{1\over x-1}-{1\over x}+{1\over x}-{1\over x+1}\)

   =\({1\over2}-{1\over x+1}\)

Từ đó suy ra: \({1\over2}-{1\over x+1}={2013\over4030}\)

=> x=2014

17 tháng 8 2015

x = 2015

**** cho mk nha