Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x:\left(-2,14\right)=\left(-3,12\right):1,2\)
=> \(x:\left(-2,14\right)=-2,6\)
=> \(x=\left(-2,6\right).\left(-2,14\right)\)
=> \(x=5,564\)
Vậy \(x=5,564.\)
d) \(2\frac{2}{3}:x=2\frac{1}{2}:\left(-0,06\right)\)
=> \(\frac{8}{3}:x=\frac{25}{12}:\left(-\frac{3}{50}\right)\)
=> \(\frac{8}{3}:x=-\frac{625}{18}\)
=> \(x=\frac{8}{3}:\left(-\frac{625}{18}\right)\)
=> \(x=-\frac{48}{625}\)
Vậy \(x=-\frac{48}{625}.\)
Chúc bạn học tốt!
\(\frac{-15}{12}x+\frac{3}{2}=\frac{1}{3}x-\frac{1}{2}\)
\(\Leftrightarrow\frac{-15}{12}x=\frac{1}{3}x-\frac{1}{2}-\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{3}x-\frac{1}{2}-\frac{3}{2}=\frac{-15}{12}x\)
\(\Leftrightarrow\frac{1}{3}x-\left(\frac{1}{2}+\frac{3}{2}\right)=\frac{-15}{12}x\)
\(\Leftrightarrow2=\frac{1}{3}x-\frac{-5}{4}x\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{5}{4}\right)=2\)
\(\Leftrightarrow\frac{19}{12}x=2\)
\(\Leftrightarrow x=2\times\frac{12}{19}\)
\(\Leftrightarrow x=\frac{24}{19}\)
\(\frac{x+2}{0,5}=\frac{2x+1}{2}\)
\(\Leftrightarrow2\left(x+2\right)=\left(2x+1\right)\times\frac{1}{2}\)
\(\Leftrightarrow2x+4=x+\frac{1}{2}\)
\(\Leftrightarrow2x+4-x=\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}-4\)
\(\Leftrightarrow x=-3,5\)
\(\Leftrightarrow x=-3,5\)
a,(=)\(3^{x+1}.\left(3+4\right)=7.3^6\)
(=)\(3^{x+1}=3^6\)
=>x+1=6(=)x=5
b
a, \(\frac{3}{5}\left(2x-\frac{1}{3}\right)+\frac{4}{15}=\frac{12}{30}\)
\(\Leftrightarrow\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(\Leftrightarrow2x-\frac{1}{3}=\frac{2}{9}\)
\(\Leftrightarrow2x=\frac{5}{9}\)
\(\Leftrightarrow x=\frac{5}{18}\)
b,\(\left(-0,2\right)^x=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{-1}{5}\right)^x=\left(\frac{-1}{5}\right)^2\)
\(\Leftrightarrow x=2\)
c,\(\left|x-1\right|-\frac{3}{12}=\left(-\frac{1}{2}\right)^2\)
\(\Leftrightarrow\left|x-1\right|-\frac{3}{12}=\frac{1}{4}\)
\(\Leftrightarrow\left|x-1\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
\(a,\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{12}{30}-\frac{4}{15}\)
\(\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)
\(2x-\frac{1}{3}=\frac{2}{9}\)
\(x=\frac{5}{18}\)
\(b,\left(-0,2\right)^x=\frac{1}{25}\)
\(\left(-0,2\right)^x=\left(-\frac{1}{5}\right)^2\)
\(\left(-0,2\right)^x=\left(-0,2\right)^2\)
\(x=2\)
c,/x-1/=1/2
Nếu
\(x-1\ge0\)
\(x\ge1\)
suy ra x-1=1/2
x=3/2(thỏa mãn điều kiện )
nếu \(x-1\le0\)
\(x\le1\)
suy ra x-1=-1/2
x=1/2 (thỏa mãn điều kiện )
Vậy ...
nha !!!
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
\(a,\frac{-1}{2}+\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}.\)
\(\Rightarrow\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}-\frac{-1}{2}=\frac{-7}{6}\)
\(\Rightarrow x-3=\frac{-7}{6}\cdot\frac{-1}{2}=\frac{7}{12}\)
\(\Rightarrow x=\frac{7}{12}+3=3\frac{7}{12}\)
\(b.2,25+\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}\)
\(\Rightarrow\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}-2,25=\frac{1}{4}\)
\(\Rightarrow x-5=\frac{3}{2}:\frac{1}{4}=6\)
\(\Rightarrow x=6+5=11\)
\(c,\left(\frac{1}{3}-x\right)^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2=\left(-\frac{1}{2}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=\frac{1}{2}\\\frac{1}{3}-x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}\\x=\frac{1}{3}-\frac{-1}{2}=\frac{5}{6}\end{cases}}\)
\(d,\frac{3}{2}+\frac{x-1}{3}=1\)
\(\Rightarrow\frac{x-1}{3}=1-\frac{3}{2}=-\frac{1}{2}\)
\(\Rightarrow x-1=-\frac{1}{2}\cdot3=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{3}{2}+1=\frac{1}{2}\)
\(e,-\frac{6}{8}+\frac{x}{12}=\frac{5}{6}\)
\(\Rightarrow\frac{x}{12}=\frac{5}{6}-\frac{-6}{8}=\frac{19}{12}\)
\(\Rightarrow x=19\)
\(g,\frac{1}{2}-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}\)
\(\Rightarrow-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\)
\(\Rightarrow x-2=\frac{-7}{6}:\frac{-1}{3}=\frac{7}{2}\)
\(\Rightarrow x=\frac{7}{2}+2=2\frac{7}{2}\)
\(h,\frac{5}{2}\left(x+1\right)-\frac{1}{2}=3\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}\left(x+1\right)=3\frac{1}{2}-\frac{1}{2}=3\)
\(\Rightarrow x+1=3:\frac{5}{2}=\frac{6}{5}\)
\(\Rightarrow x=\frac{6}{5}-1=\frac{1}{5}\)
\(k,\frac{x}{3}-\frac{1}{2}=-2\left(x+1\right)+3\)
\(\Rightarrow x\cdot\frac{1}{3}-\frac{1}{2}=-2x-2+3\)
\(\Rightarrow\frac{1}{3}x+2x=-2+3+\frac{1}{2}\)
\(\Rightarrow\frac{7}{3}x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:\frac{7}{2}=\frac{3}{7}\)
a ) \(1\frac{1}{2}+x=\frac{3}{7}-7\)
\(\frac{3}{2}+x=-\frac{46}{7}\)
\(x=-\frac{46}{7}-\frac{3}{2}\)
\(x=-\frac{113}{14}\)
\(2\frac{2}{3}:x=2\frac{1}{12}:\left(-0,06\right)\)
<=> \(\frac{8}{3}:x=\frac{-625}{18}\)
<=> \(x=-\frac{48}{625}\)
\(2\frac{2}{3}:x=2\frac{1}{12}:\left(-0,06\right)\)
\(\frac{8}{3}:x=\frac{25}{12}:\frac{-3}{50}\)
\(\frac{8}{3}:x=-\frac{625}{18}\)
\(x=\frac{8}{3}:\frac{-625}{18}\)
\(x=-\frac{48}{625}\)