K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a) \(x^2-25-\left(x+5\right)=0\Leftrightarrow x^2-25-x-5=0\Leftrightarrow x^2-x-30=0\)

\(\Leftrightarrow x^2+5x-6x-30=0\Leftrightarrow x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\) vậy \(x=6;x=-5\)

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(2-4x=0\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{2}{4}=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)

c) \(x^2\left(x^2+4\right)-x^2-4=0\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\x^2=-4\left(vôlí\right)\end{matrix}\right.\)

ta có : \(x^2=1\Leftrightarrow x=\pm1\) vậy \(x=1;x=-1\)

29 tháng 7 2018

- Bạn ơi cho mềnh hỏi :

x ^2 + 5x-6x-30= 0 .5 dựa

5x - 6x ,bn dựa vào chỗ nào mừa lại coá biểu thức đó ???

6 tháng 8 2017

Tìm x:

a) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow x^2-x-30=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=6\\ x=-5 \end{array} \right.\)

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(\Leftrightarrow2-4x=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x^2-1=0\\ x^2+4=0 \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=1\\ x=-1 \end{array} \right.\)

7 tháng 8 2017

cam on ban da giup minh

16 tháng 9 2017

a) \(5\left(x+7\right)-12x=15\)

\(5x+35-12x=15\)

\(-7x=15-35\)

\(-7x=-20\)

\(x=\frac{20}{7}\)

vay \(x=\frac{20}{7}\)

b) \(x^2-25-\left(x+5\right)=0\)

\(x^2-5^2-\left(x+5\right)=0\)

\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(x-5-1\right)=0\)

\(\left(x+5\right)\left(x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)

\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(-2.\left(2x-1\right)=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

vay \(x=\frac{1}{2}\)

d) \(x^2.\left(x^2+4\right)-x^2-4=0\)

\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)

vay \(x=1\)hoac \(x=-1\)

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)

6 tháng 10 2020

a) 4x3 - 9x = 0

<=> x( 4x2 - 9 ) = 0

<=> x( 2x - 3 )( 2x + 3 ) = 0

<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0

<=> x = 0 hoặc x = ±3/2

b) 3x( x - 2 ) - 5x + 10 = 0

<=> 3x( x - 2 ) - 5( x - 2 ) = 0

<=> ( x - 2 )( 3x - 5 ) = 0

<=> x - 2 = 0 hoặc 3x - 5 = 0

<=> x = 2 hoặc x = 5/3

c) 4x( x + 3 ) - x2 + 9 = 0

<=> 4x( x + 3 ) - ( x2 - 9 ) = 0

<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0

<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0

<=> ( x + 3 )( 4x - x + 3 ) = 0

<=> ( x + 3 )( 3x + 3 ) = 0

<=> x + 3 = 0 hoặc 3x + 3 = 0

<=> x = -3 hoặc x= -1

d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )

<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0

<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0

<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0

<=> ( x - 4 ).3x = 0

<=> x - 4 = 0 hoặc 3x = 0

<=> x = 4 hoặc x = 0

e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )

<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0

<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0

<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0

<=> ( 4x - 5 )( 2x + 4 ) = 0

<=> 4x - 5 = 0 hoặc 2x + 4 = 0

<=> x = 5/4 hoặc x = -2

f) ( x + 1/5 )2 = 64/9

<=> ( x + 1/5 )2 = ( ±8/3 )2

<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3

<=> x = 37/15 hoặc x = -43/15

g) 9( x + 2 )2 = ( x + 3 )2

<=> 32( x + 2 )2 - ( x + 3 )2 = 0

<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0

<=> ( 3x + 6 )2 - ( x + 3 )2 = 0

<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0

<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0

<=> ( 2x + 3 )( 4x + 9 ) = 0

<=> 2x + 3 = 0 hoặc 4x + 9 = 0

<=> x = -3/2 hoặc x = -9/4

2 tháng 7 2018

a)  \(\left(x+6\right)^2-x\left(x+9\right)=0\)

\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)

\(\Leftrightarrow\)\(3x+36=0\)

\(\Leftrightarrow\)\(x=-12\)

Vậy...

b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)

\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)

\(\Leftrightarrow\)\(23x+12=9\)

\(\Leftrightarrow\)\(x=-\frac{3}{23}\)

Vậy

c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)

\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)

\(\Leftrightarrow\)\(16x^2+2x-14=0\)

\(\Leftrightarrow\)\(8x^2+x-7=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)

Vậy

d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)

\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)

\(\Leftrightarrow\)\(-12x+16=0\)

\(\Leftrightarrow\)\(x=\frac{4}{3}\)

Vậy

e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)

\(\Leftrightarrow\)\(-x^2-3x+10=0\)

\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Vậy

22 tháng 10 2018

a ) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

b ) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

c ) \(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2=-4\left(VL\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

19 tháng 10 2020

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)

\(\Leftrightarrow x=1\)

b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)

d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)

e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)

f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)

19 tháng 10 2020

a) x( x + 1 ) - x( x - 5 ) = 6

⇔ x2 + x - x2 + 5x = 6

⇔ 6x = 6

⇔ x = 1

b) 4x2 - 4x + 1 = 0

⇔ ( 2x - 1 )2 = 0

⇔ 2x - 1 = 0

⇔ x = 1/2

c) x2 - 1/4 = 0

⇔ ( x - 1/2 )( x + 1/2 ) = 0

⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)

d) 5x2 = 20x

⇔ 5x2 - 20x = 0

⇔ 5x( x - 4 ) = 0

⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

e) 4x2 - 9 - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 - x ) = 0

⇔ ( 2x - 3 )( x + 3 ) = 0

⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)

f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )

⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0

⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0

⇔ ( 2x - 5 )(-2) = 0

⇔ 2x - 5 = 0

⇔ x = 5/2

15 tháng 8 2016

a) \(x\left(x-1\right)-x^2+2x=5\)

\(\Leftrightarrow x^2-x-x^2+2x=5\)

\(\Leftrightarrow x=5\)

b) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x=21\)

\(\Leftrightarrow x=-21\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x=-4\)

15 tháng 8 2016

a) x ( x - 1 ) - x^2 + 2x = 5

=>x2-x-x2+2x=5

=>-x+2x=5

=>x=5

b) 4x ( 3x + 2 ) - 6x ( 2x + 5 ) + 21 ( x - 1 ) = 0

=>12x2+8x-12x2-30x-21+21x=0

=>-x-21=0

=>x=-21

c) 2x( x + 1) - x^2 ( x + 2 ) + x^3 - x + 4 = 0

=>2x2+2x-x3-2x2+x3-x+4=0

=>x+4=0

=>x=-4