Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(-2\le x\le5\)
\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(x+2\right)\left(5-x\right)}-4=0\)
Đặt \(\sqrt{x+2}+\sqrt{5-x}=a>0\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}\)
\(\Rightarrow a+\frac{a^2-7}{2}-4=0\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}=1\)
\(\Leftrightarrow-x^2+3x+10=1\)
\(\Leftrightarrow x^2-3x-9=0\)
b/ \(\Leftrightarrow\sqrt{x+1}-\sqrt{4-x}+2\left(5+2\sqrt{\left(x+1\right)\left(4-x\right)}\right)=17\)
Đặt \(\sqrt{x+1}-\sqrt{4-x}=a\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{5-a^2}{2}\)
\(a+2\left(5+5-a^2\right)=17\)
\(\Leftrightarrow-2a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}-\sqrt{4-x}=-1\\\sqrt{x+1}-\sqrt{4-x}=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+1=\sqrt{4-x}\\2\sqrt{x+1}=2\sqrt{4-x}+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2+2\sqrt{x+1}=4-x\\4x+4=25-4x+12\sqrt{4-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1-x\left(x\le1\right)\\12\sqrt{4-x}=8x-21\left(x\ge\frac{21}{8}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\left(1-x\right)^2\\144\left(4-x\right)=\left(8x-21\right)^2\end{matrix}\right.\)
c/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)
\(a^2-1=3\left(a-1\right)\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-x^2}=\frac{a^2-1}{2}=0\\\sqrt{x-x^2}=\frac{a^2-1}{2}=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-x^2=0\\x-x^2=\frac{9}{4}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{5+2x}=a\ge0\\\sqrt{5-2x}=b\ge0\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}\left(3a-1\right)\left(3b-1\right)=16\\a^2+b^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3ab-\left(a+b\right)=5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3ab-5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\)
\(\Rightarrow\left(3ab-5\right)^2-2ab=10\)
\(\Leftrightarrow9\left(ab\right)^2-32ab+15=0\Rightarrow\left[{}\begin{matrix}ab=3\\ab=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(ab\right)^2=9\\\left(ab\right)^2=\frac{25}{81}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}25-4x^2=9\\25-4x^2=\frac{25}{81}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=\frac{500}{81}\end{matrix}\right.\)
2)
A)A=|x-2017|+|x-17|
ta có A= \(\left|x-2017\right|+\left|x-17\right|=\left|x-2017\right|+\left|17-x\right|\)
\(\ge\left|x-2017+17-x\right|=\left|-2000\right|=2000\)
vậy A\(\ge2000\)
=>GTNN của A là 2000 khi x-2017 và x-17 cùng dấu
=> \(\left[{}\begin{matrix}x-2017\ge0\\x-17\ge0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\ge2017\\x\ge17\end{matrix}\right.\)
hoặc
=>\(\left[{}\begin{matrix}x-2017\le0\\x-17\le0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\le2017\\x\le17\end{matrix}\right.\)
=>17\(\le x\le2017\)
a) \(x\cdot3\dfrac{1}{4}+\left(-\dfrac{7}{6}\right)\cdot x-1\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{3}{4}x-\dfrac{7}{6}x-\dfrac{2}{3}=\dfrac{5}{12}\)
\(\Leftrightarrow9x-14x-8=5\)
\(\Leftrightarrow-5x-8=5\)
\(\Leftrightarrow-5x=5+8\)
\(\Leftrightarrow-5x=13\)
\(\Rightarrow x=-\dfrac{13}{5}\)
Vậy \(x=-\dfrac{13}{5}\)
b) \(5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow5\dfrac{8}{17}:x+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\left(đk:x\ne0\right)\)
\(\Leftrightarrow\dfrac{93}{17}\cdot\dfrac{1}{x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{93}{17x}+\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{93}{17x}+2x-\dfrac{3}{4}=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}\ge0\right)\\\dfrac{93}{17x}-\left(2x-\dfrac{3}{4}\right)=-\dfrac{7}{4}\left(đk:2x-\dfrac{3}{4}< 0\right)\end{matrix}\right.\)
đến đây bạn giải tiếp nhé
c) \(\left(x+\dfrac{1}{2}\right)\cdot\left(\dfrac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0-\dfrac{1}{2}\\2x=0+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{2}{3}:2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{2};x_2=\dfrac{1}{3}\)
a: Trường hợp 1: x<2
Pt sẽ là: 2-x+3-x=2
=>5-2x=2
=>2x=3
hay x=3/2(nhận)
Trường hợp 2: 2<=x<3
Pt sẽ là 2-x+x-3=2
=>-1=2(vô lý)
Trường hợp 3: x>=3
Pt sẽ là:
x-2+x-3=2
=>2x-5=2
=>2x=7
hay x=7/2(nhận)
b: Trường hợp 1: x<-2
Pt sẽ là:
-x-2-x+5=3
=>-2x+3=3
hay x=0(loại)
Trường hợp 2: -2<=x<5
Pt sẽ là x+2+5-x=3
=>7=3(vô lý)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=3
=>2x-3=3
hay x=3(loại)
c: =>2|x-3|=12
=>|x-3|=6
=>x-3=6 hoặc x-3=-6
=>x=9 hoặc x=-3
a: =>1/2:x=-3/10
hay x=1/2:(-3/10)=-5/3
b: =>1/5(2-x)=6/5
=>2-x=6
hay x=-4