Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-4=0\)
\(\Rightarrow x^2-2^2=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(x\left(x+5\right)=9x\)
\(\Rightarrow x^2+5x-9x=0\)
\(\Rightarrow x^2-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
c) \(3x^3-48x=0\)
\(\Rightarrow3x\left(x^2-16\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\Rightarrow\left(x-4\right)\left(x+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
d) \(x^4+x^2-20=0\)
\(\Rightarrow\left(x^2\right)^2+x^2-20=0\)
Đặt x2 = a
\(\Rightarrow a^2+a-20=0\)
\(\Rightarrow a^2+5a-4a-20=0\)
\(\Rightarrow a\left(a+5\right)-4\left(a+5\right)=0\)
\(\Rightarrow\left(a-4\right)\left(a+5\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x^2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^2=4\Rightarrow x=\pm2\\x^2=-5\Rightarrow x\in\varnothing\end{matrix}\right.\)
d) x4 + x2 - 20 = 0
\(\Rightarrow\) x4 + x2 = 20
\(\Rightarrow\) x4 + x2 = 24 + 22
\(\Rightarrow\) x = 2
a) (4x-5)^2 -4 (x-2)^2 =0
⇔(4x-5)2-[2(x-2)]2=0
⇔(4x-5)2-(2x-4)2=0
⇔(4x-5-2x+4)(4x-5+2x-4)=0
⇔(2x-1)(6x-9)=0
⇔\(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}2x=1\\6x=9\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, Thắc mắc đề cóa sai khong .
( đáp án vẫn có nhưng là số vô tỉ nên nghe lạ á )
b, Ta có : \(x^3-12x^2+48x-72=0\)
=> \(x^3-3.x^2.4+3.x.4^2-64-8=0\)
=> \(\left(x-4\right)^3-8=0\)
=> \(\sqrt[3]{\left(x-4\right)^3}=\sqrt[3]{8}=2\)
=> \(x=6\)
Vậy ....
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
\(\text{1) }3x^3-48x=0\\ \Leftrightarrow x\left(3x^2-48\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2-48=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2=48\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\\ \text{Vậy }x=0\text{ hoặc }x=\pm4\)
\(\text{2) }x^3+x^2-4x=4\\ \Leftrightarrow x^3+x^2-4x-4=0\\ \Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\\ \Leftrightarrow\left(x^2-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\\ \text{Vậy }x=2\text{ hoặc }x=-2\text{ hoặc }x=1\)
1) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x^2-4^2\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy x=0 ; x=4 ; x=-4
b) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy x=-1 ; x=2 ; x=-2