Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2+\left|x^2-1\right|=0.\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|x^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2-1=0\end{cases}\Rightarrow x=1}\)
2x+2x+1=24
=>2x+2x=23
=>Ta không có giá trị nào thỏa mãn
Vì: Ta có với mọi số mũ trên cơ số 2 thì luôn luôn là 1 giá trị chẵn
a) Sửa đề: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=101x\)
Ta có: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\)thì: \(pt\Leftrightarrow x-1+x-2+x-3+...+x-100=101x\)
\(\Rightarrow100x-\left(1+2+3+...+100\right)=101x\)
\(\Rightarrow-x=1+2+3+...+100=5050\Leftrightarrow x=-5050\)
b) \(A=3x-x^2-4\)
\(A=3x-x^2-\frac{9}{4}-\frac{7}{4}\)
\(A=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}\)
\(A=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" khi: \(x=\frac{3}{2}\)
Ta có: \(\hept{\begin{cases}8\left(x-2009\right)^2\ge0\Leftrightarrow25-y^2\ge0\\8\left(x-2009\right)^2⋮8\Leftrightarrow25-y^2⋮8\end{cases}}\)
Mà: \(25-y^2\le25\) nên: \(\hept{\begin{cases}0\le25-y^2\le25\\25-y^2⋮8\end{cases}}\)
Ta dễ dàng tìm được: \(25-y^2\in\left\{0;8;16;24\right\}\)
\(\Rightarrow y^2\in\left\{25;17;9;1\right\}\Leftrightarrow y\in\left\{5;\sqrt{17};3;1\right\}\left(y\in N\right)\)
Nên ta chọn: \(5;3;1\).Thay vào tìm được x tương ứng
Để A đạt giá trị lớn nhất
=> X+2 lớn nhất
và |x| nhỏ nhất
Vì | x| > 0 mà x thuộc Z \(\Rightarrow\hept{\begin{cases}x=1\\x=-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}th1:x=1\Rightarrow A=\frac{1+2}{\left|1\right|}=3\\th2:x=-1\Rightarrow A=\frac{-1+2}{\left|-1\right|}=1\end{cases}}\)
ta thấy: Th1: 1+2=3 > th2: -1+2=1 mà x+2 lớn nhất
vậy GTLN của A là 3 khi x =1
bạn ơi cái đề kì vậy đáng ra phải cho bằng bao nhiêu mới tính được chứ bạn nên xem lại đề đi
\(2^x+2+2^x=0\)
\(=2^{2x}+2=0\)
\(=2\left(2x+1\right)=0\)
\(=>2x+1=0=>x=\frac{-1}{2}\)