K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

\(\left(x^2+7\right)\left(x^2-7\right)< 0\)

mà \(x^2+7>=7>0\forall x\)

nên \(x^2-7< 0\)

=>\(x^2< 7\)

=>\(-\sqrt{7}< x< \sqrt{7}\)

mà x nguyên

nên \(x\in\left\{-2;-1;0;1;2\right\}\)

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

1 tháng 10 2018

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

Ta lại có:

\(x^7+y^7\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^4y^x-x^3y^4\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)+x^3y^3z\) ( Thay x + y = -z )

Ta sẽ đi tính \(x^3+y^4;x^4+y^4\)
Lại có​:

1/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-z^3+3xyz\)

2/ \(x^2+y^2=\left(x+y\right)^2-2xy=z^2-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(z^2-2xy\right)^2-2x^2y^2=z^4-4xyz^2+2x^2y^2\)

Như vậy \(x^7+y^7=\left(-z^3+3xyz\right)\left(z^4-4xyz^2+2x^2y^2\right)+x^3y^3z\)

\(\Rightarrow x^7+y^7=-z^7+7xyz^5-14x^2y^2z^3+7x^3y^3z\)

\(\Rightarrow x^7+y^7+z^7=7xyz^5-14x^2y^2z^3+7x^3y^3z\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left(z^4-2xyz^2+x^2y^2\right)\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(z^2-2xy\right)+x^2y^2\right]\)

\(z^2-2xy=x^2+y^2\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(x^2+y^2\right)+x^2y^2\right]\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left(x^2z^2+y^2z^2+x^2y^2\right)\)

13 tháng 8 2019

1) tìm x : 

5x. (x - 3 ) + 7.(x - 3 ) = 0

<=> ( x -3 ) . ( 5x +7 ) = 0

<=> x - 3 = 0 hoặc 5x + 7 = 0 

<=> x = 3 hoặc x = -7/5

Vậy x € { 3 ; -7/5 }

3 ) chứng mình rằng : 

1996 + 71995 + 71994 chia hết cho 57 

71996 + 71995 + 71994 

<=> 71994  . 72 + 71994 .7 + 71994

<=> 71994 . ( 7 + 7 + 1 ) 

<=> 71994 .  57 chia  hết cho 57 ( vì 57 chia hết cho 57 )  ( đ..p.c.m ) 

13 tháng 8 2019

Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x^2-8x-21=0\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)

Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)

\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)

TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)

TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)

C, tương tự 

Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)

\(=7^{1994}.57\)\(⋮\)\(7\)

\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)

8 tháng 6 2015

từ x+y+z=0 => x=-(x+y) 

\(x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5=x^5-x^5+y^5-y^5-5\left(x^4y+2x^3y^2+2x^2y^3+xy^4\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)(1)

\(x^2+y^2+z^2=x^2+y^2+\left[-\left(x+y\right)^2\right]=x^2+y^2+\left(x+y\right)^2=2\left(x^2+y^2+xy\right)\)(2) 

\(x^7+y^7+z^7=x^7+y^7-\left(x+y\right)^7=-7xy\left(x^5+3x^4y+5x^3y^2+5x^2y^3+3xy^4+y^5\right)\)

\(=-7xy\left(x+y\right)\left(x^2+y^2+xy\right)\)(đoạn này tách như chỗ mũ 5 sẽ ra) (3)

nhân 10 với (3) và 7 với (1)(2) sẽ ra 2 vế = nhau của điều phải chứng minh.

đây là các phương trình bậc cao, em lên gg gõ bảng Paxcan sẽ ra nha! có qui luật, sắp thi HSG đúng k? ráng học thuộc để áp dụng nha! chúc em học tốt

 

21 tháng 7 2015

Đề sai mình sửa lại cho bạn :cho x+y+z =0 CMR:\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\)

đặt x+y+z =a  , xy+yz+xz =b ,xyz =c

\(x^7+y^7+z^7=a^7-7a^5b+14a^3b^2+7a^4c-7ab^3-21ab^2c+7b^2c+7ac^2\)(1)

mà a= x+y+z =0 ,thay b = xy+yz+xz ,c =xyz vào (1)

\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\) (dfcm)

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp