Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
a)|3x-2|=|3x+5|
x<-5/3 or x>=2/3
3x-2=3x+5=> loai
-5/3<=x<2/3
3x-2=-3x-5
6x=-3;x=-1/2(n)
a, Có \(\dfrac{3x-2y}{7}=\dfrac{4x+3y}{5}\)
=> 5(3x-2y)=7(4x+3y)
=> 15x-10y=28x+21y
=> 15x-28x=21y+10y
=> -13x=31y
=> \(\dfrac{x}{y}=\dfrac{31}{-13}=\dfrac{-31}{13}\)
b,\(\dfrac{5x-2y}{3x+4y}=\dfrac{-3}{4}\)
=> 4(5x-2y)=-3(3x+4y)
=> 20x-8y= -9x-12y
=> 20x+9x=-12y+8y
=> 29x=-4y
=> \(\dfrac{x}{y}=\dfrac{-4}{29}\)
Áp dung... ta có
3x-2y/5=3x-1/4=(3x-2y+3x-1)/4+5=2y-1/9
=>2y-1/9=2y+5/7
=>(2y-1).7=(2y+5).9
=>14y-7=18y+45
=>y=-13
Thay vào,tìm x
Ko chac dung ko