Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{-8}{4}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.4=-8\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
Ta có :\(x\div y\div z=2\div3\div4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\Rightarrow\hept{\begin{cases}x=2k\\2y=6k\\z=4k\end{cases}}}\)
Mà \(x+2y-z=-8\)
\(\Rightarrow2k+6k-4k=-8\)
\(\Rightarrow4k=-8\)
\(\Rightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=2.\left(-2\right)\\y=3.\left(-2\right)\\z=4.\left(-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)
=> \(\frac{x}{2}=\frac{3}{5}\Rightarrow x=\frac{2\cdot3}{5}=\frac{6}{5}\)
\(\frac{y}{1}=\frac{3}{5}\Rightarrow y=\frac{3}{5}\)
\(\frac{z}{4}=\frac{3}{5}\Rightarrow z=\frac{3\cdot4}{5}=\frac{12}{5}\)
\(a)\left(-2.x^2.y\right).\left(5.x.y^4\right)\)
\(=\left(-2.5\right)\left(x^2.x\right)\left(y.y^4\right)\)
\(=-10.x^3.y^5\)
Bậc : \(3+5=8\)
Hệ số : \(-10\)
\(b)\left(\frac{27}{10}.x^4.y^2\right).\left(\frac{5}{9}.x.y\right)^0\)
\(=\frac{27}{10}.x^4.y^2.1\)
\(=\frac{27}{10}.x^4.y^2\)
Bậc : \(4+2=6\)
Hệ số : \(\frac{27}{10}\)
\(c)\left(\frac{1}{3}.x^3.y\right).\left(-xy\right)^2\)
\(=\frac{1}{3}.x^3y.\left(-x\right)^2.y^2\)
\(=\frac{1}{3}.x^3.y.x^2.y^2\)
\(=\frac{1}{3}.\left(x^3.x^2\right).\left(y.y^2\right)\)
\(=\frac{1}{3}x^5.y^3\)
Bậc : \(5+3=8\)
Hệ số : \(\frac{1}{3}\)
Chúc bạn học tốt !!!
\(\frac{20-x}{x+7}=\frac{2}{5}\)
=> \(5\left(20-x\right)=2\left(x+7\right)\)
<=> 100 - 5x = 2x + 14
=> 2x + 5x = 100 - 14
=> 7x = 86
=> x = 86/7
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}-\frac{y}{3}=\frac{y^2-x^2}{3^2-2^2}=\frac{20}{5}=4\)
\(=>\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{3}=4\end{cases}}=>\hept{\begin{cases}x=8\\y=12\end{cases}}\)
Ta có: 2x + 3y + 5z - 119 = 0
=> 2x + 3y + 5z = 119
\(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)
Vậy...