Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,/2x-5/=13
\(\Rightarrow\)\(\orbr{\begin{cases}2x-5=-13\\2x-5=13\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-13+5=-8\\2x=13+5=18\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-8:2=-4\\x=18:2=9\end{cases}}\)
vậy x\(\in\){9,-4}
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Vì \(\left(x-y^2+z\right)^2\ge0;\left(y-2\right)^2\ge0;\left(x+3\right)^2\ge0\)nên \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\)
Mà \(\left(x-y^2+z\right)+\left(y-2\right)^2+\left(x+3\right)^2=0\)nên \(\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}}\)
x = 7 ; y = 11 ; z = 13
giải thích hô mình với