Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x+\frac{3}{4}\right|\ge0;\left|y-\frac{1}{5}\right|\ge0;\left|x+y+z\right|\ge0\) với mọi x; y , z
nên để \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
thì \(\left|x+\frac{3}{4}\right|=\left|y-\frac{1}{5}\right|=\left|x+y+z\right|=0\)
=> \(x+\frac{3}{4}=0;y-\frac{1}{5}=0;x+y+z=0\)
+) x + 3/4 = 0 => x = -3/4
+) y - 1/5 = 0 => y =1/5
+) x + y + z = 0 => z = - x - y = 3/4 - 1/5 = 11/20
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)
Ta có
\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)
Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)
\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)