Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)
Bài dưới tướng tự nhé
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
Ta có:\(\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|=0\)
Mà \(\hept{\begin{cases}\left(2x-3y\right)^{10}\ge0\\\left|4x-3z\right|\ge0\\x^2+y^2+z^2-116\ge0\end{cases}}\)
\(\Rightarrow\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|\ge0\)
Dấu '=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}2x-3y=0\\4x-3z=0\\x^2+y^2+z^2-116=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=3y\\4x=3z\\x^2+y^2+z^2=116\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{x}{3}=\frac{z}{4}\\x^2+y^2+z^2=116\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\\x^2+y^2+z^2=116\left(1\right)\end{cases}}\)
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\)
\(\Rightarrow x=3k;y=2k;z=4k\)
Thay vào (1) ta được:
\(\left(3k\right)^2+\left(2k\right)^2+\left(4k\right)^2=116\)
\(\Rightarrow9k^2+4k^2+16k^2=116\)
\(\Rightarrow k^2\left(9+4+16\right)=116\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\left(h\right)k=-2\)
Thay vào tìm được \(x=-6;y=-4;z=-8\left(h\right)x=6;y=4;z=8\)
\(3x=2y=z\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}=\frac{x+y+2z}{\frac{1}{3}+\frac{1}{2}+2}=\frac{105}{\frac{17}{6}}=\frac{630}{17}\)
x = 1/3 . 630/17 =210/17
y=1/2 . 630/17 =315/17
z =760/17
b)\(\frac{x}{1}=\frac{y}{2}=\frac{z}{\frac{1}{3}}=\frac{3x-2y+z}{3.1-2.2+\frac{1}{3}}=\frac{1}{-\frac{2}{3}}=-\frac{3}{2}\)
x=-3/2
y=-3/2.2 =-3
z =-3/2 .1/3 = -1/2
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(y-2\right)}{6}=\frac{3.\left(z-3\right)}{12}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{4-6+12}=1\)
\(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
Vậy x=3,y=5,z=7
vì \(\left(x-5\right)^{10}\) có số mũ chẵn=>\(\left(x-5\right)^{10}\)với mọi x thì luôn \(\ge0\)
\(|y^2-0,04|\)với mọi y thì luôn \(\ge0\)
vì \(\left(3z+0,1\right)^2\)với mọi z thì luôn\(\ge0\)
mà\(\left(x-5\right)^{10}+\)\(|y^2-0,04|+\)\(\left(3z+0,1\right)^2\)\(=0\)
=>\(\hept{\begin{cases}x-5=0\\y^2-0,04=0\\3z+0,1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=5\\y=0.2\\z=\frac{-1}{30}\end{cases}}\)