K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét x=1=>y2=1=>y=1

xét x=2=>y2=3(loại)

xét x=3=>y2=9=>y=3

xét x=4=>y2=33(loại)

xét x>4=>1!+2!+3!+...+x!=33+...0+...0+....+...0

=....3=y2(loại)

vậy (x;y)=(1;1);(3;3)

Nguyễn Thiệu Công Thành trả lời đúng rùi.**** thui

2 tháng 10 2016

x=15

y=1183893

Tran minh Lan

 

5 tháng 9 2015

a. x.y=12

=> x và y thuộc Ư(12)={1;3;4;12}

trong các số trên chỉ có 3+4=7

=> x=3, y=4 hoặc x=4, a=7

b và c suy luận tương tự!

22 tháng 12 2015

1)(2x+1)(y-4)=12

Ta xét bảng sau:

2x+11-12-23-34-46-612-12
2x0-21-32-43-55-711-13
x0-1  1-2      
y-412-12  4-4      
y16-8  80      

 

2)n-7 chia hết cho n+1

n+1-8 chia hết cho n+1

=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}

=>nE{2;0;3;-1;5;-3;9;-7}

3)|x+3|+2<4

|x+3|<4-2

|x+3|<2

=>|x+3|=1      và      |x+3|=0

=>x+3=1               hoặc            x+3=-1                 hay              x+3=0

x=1-3                                       x=-1-3                                     x=0-3

x=-2                                        x=-4                                        x=-3

Vậy x=-2;-3 hoặc x=-4

 

DD
23 tháng 7 2021

Với \(y\ge5\)

\(VP=1!+2!+3!+...+y!\)

có \(k!=1.2.3.4.5.....k\)có chữ số tận cùng là \(0\)với \(k\ge5\).

Do đó \(VP\)có chữ số tận cùng là chữ số tận cùng của \(1!+2!+3!+4!=33\)

nên có chữ số tận cùng là \(3\).

Mà số chính phương không thể có chữ số tận cùng là \(3\)do đó phương trình vô nghiệm với \(y\ge5\).

Thử trực tiếp từng trường hợp \(1\le y\le4\)ta được các nghiệm là \(\left(1,1\right),\left(3,3\right)\).

1 tháng 8 2016

Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:

x + 11236918
y + 11896321
x0125817
y1785210