Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy | x - 3y |2007 và | y + 4 |2008 luôn luôn bé hơn hoặc bằng 0 ( 1 )
Từ 1 ta suy ra 2 số hạng này không thể đối nhau
Chỉ còn trường hợp | x - 3y |2007 = 0 và | y + 4 |2008 = 0
=> x - 3y = 0 và y + 4 = 0 => y = - 4
Thay y = - 4 vào đẳng thức , ta được : x - 4.3 = 0 => x = 12
Vậy x = 12 ; y = - 4
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Trả lời
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố....
Ta có: \(2006^x=2005^y+2004^z>1\)
\(\Rightarrow x\ge1\)
Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ
nên \(2004^z\) là số lẻ
\(\Rightarrow z=0\)
Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)
Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\)
Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.
Vậy \(x=y=1;z=0\)
Vì \(\left|2x-27\right|^{2007}\ge0\) với mọi x; \(\left(3y+10\right)^{2008}\ge0\) với mọi x.
Do đó: \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\) với mọi x.
Theo đề bài, ta có:
\(\left|2x-27\right|^{2007}=0\Rightarrow2x-27=0\Rightarrow x=....\)
\(\left(3y+10\right)^{2008}=0\Rightarrow3y+10=0\Rightarrow y=.....\)
Vì /2x-27/^2007 > 0 với mọi x; (3y+10)^2008 > 0 với mọi x
Do đó:/2x-27/^2007 + (3y+10)^2008 > 0 với mọi x(mấy câu này mình thêm vào để bạn hiểu hơn thôi)
Theo đề bài thì ta có:/2x-27/^2007+(3y+10)^2008 =0
=>/2x-27/^2007 =0 =>2x-27=0 =>x=....
(3y+10)^2008 =0 =>3y+10=0 =>y=.....
Để ( x + y )2006 + 2007.| y - 1 | = 0 <=> ( x + y )2006 và 2007.| y - 1 | là hai số đối nhau
Nhưng ( x + y )2006 có số mũ chẵn => số hạng này là số nguyên dương ( 1 )
2007.| y - 1 | , ta thấy | y - 1 | ≥ 0 và 2007 là số dương => 2007.| y - 1 | là số dương ( 2 )
Từ ( 1 ) và ( 2 ) ta suy ra : ( x + y )^2006 + 2007.| y - 1 | là số dương
Vậy ( x + y )^2006 và 2007.| y - 1 | không đối nhau
Ta chỉ còn trường hợp ( x + y )^2006 = 0 và 2007.| y - 1 | = 0
=> x - 1 = 0 và x + y = 0
=> y = 1 và x = - 1