K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

Đề này cũng sai rồi, cho mình xin phép sửa:

Tìm x,y,z biết: \(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)

Bài làm:

Ta có: \(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

=> \(x=\frac{1}{2}\) hoặc \(y=-\frac{1}{3}\) hoặc \(z=2\)

+ Nếu: \(x=\frac{1}{2}\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

+ Nếu: \(y=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

+ Nếu: \(z=2\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy ta có 3 cặp số (x;y;z) thỏa mãn: \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right);\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right);\left(4;3;2\right)\)

24 tháng 7 2017

bộ định không làm bài tập về nhà à , thấy bài cái là lên hỏi

25 tháng 7 2017

có làm nhưng mà quên cách òi giúp cái coi

28 tháng 12 2020

Bài 1 :

\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)

\(\Leftrightarrow x=-23\)

\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

25 tháng 9 2018

làm hộ mik cho

12 tháng 5 2023

cặc

 

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

24 tháng 8 2017

a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)

b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)

\(2\ne3\ne4\) nên \(x\in\varnothing\)

c)

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)

Với mọi \(x\ge0\) ta có:

\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)

\(\Leftrightarrow9x+90=x-1\)

\(\Leftrightarrow9x=x-89\)

\(\Leftrightarrow-8x=89\)

\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)

Với mọi \(x< 0\) ta có:

\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)

\(\Leftrightarrow-9x-90=x-1\)

\(\Leftrightarrow-9x=x+89\)

\(\Leftrightarrow-10x=89\)

\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)

d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)