K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x

24 tháng 2 2017

2c)

Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)

\(\Rightarrow\left(x-2012\right)^2\le3\)

\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)

Vậy x=2012,y=5

27 tháng 3 2017

bn nhấn vào đây nhé: Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến

22 tháng 2 2018

Ta có: 36-y2=8(x-2010)2. => y2=36-8(x-2010)2 

+)Nếu y=0 (

\(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)

\(\Rightarrow\left(x-2010\right)^2=4,5\)ko thỏa mãn vì )

+)Nếu y khác 0

\(\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\) 

\(\Rightarrow8\left(x-2010\right)^2>36\)

\(\Rightarrow\left(x-2010\right)^2>4,5\)

Mà (x-2010)2 là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\) 

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\) 

 \(\Rightarrow y=\sqrt{36}=6\Rightarrow x=2010;y=6\)(thỏa mãn)

Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)

Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x- 2010=-2

\(\Rightarrow\orbr{\begin{cases}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{cases}}\)

\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4=2^2\Rightarrow y=2\)(do y thuộc N) 

\(\Rightarrow\orbr{\begin{cases}x=2010\\y=6\end{cases};\orbr{\begin{cases}x=2012\\y=4\end{cases};\orbr{\begin{cases}2008\\y=2\end{cases}}}}\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

22 tháng 9 2016

dễ thấy (2x-1)2016, (y-2/5)2016 và /x+y-z/ đều lớn hơn hoặc bằng 0 => mỗi hạng tử trên đều bằng 0 rồi từ đó tính ra

6 tháng 8 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)

Áp dụng tinh chất của dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)

\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)

Vậy .......

15 tháng 1 2018

Mong bạn thông cảm cho . Dấu " / " là phân số nhé !

x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16

=> x/2 = y/3 <=> x/8 = y/12     (1)

     y/4 = z/5 <=> y/12 = z/15    (2)

Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16

=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24

Áp dụng t/c dãy tỉ số bằng nhau , ta có :

  x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2

=> x/8 = 2 => x = 16

     y/12 = 2 => y = 24

     z/15 = 2 => z = 30

Vậy x = 16

       y = 24

       z = 30

Chúc bạn học tốt !

31 tháng 3 2018

\(36-y^2=8\left(x-2010\right)^2+y^2=36\)

\(\text{Do: }y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Do đó: \(\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\text{ nen }y=6\)

Với \(\left(x-2010\right)^2=1\Rightarrow\orbr{\begin{cases}x=2010\\y^2=36-8=28\left(\text{loai}\right)\end{cases}}\)

Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x=2012\\y^2=36-32=4\Rightarrow y=2\end{cases}}\)

Các cặp số thỏa mãn yêu cầu đề bài là: (2010; 6), (2010; 2).

22 tháng 9 2016

Do \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y-z\right|\ge0\)

Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y-z\right|=0\)

=> \(\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y-z\right|=0\end{cases}\)=> \(\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\)=> \(\begin{cases}2x=1\\y=\frac{2}{5}\\x+y=z\end{cases}\)=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\x+y=z\end{cases}\)

=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)

13 tháng 3 2017

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!