Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3
Vì x:y có vai trò như nhau nên ta giả sử \(x\le y\)
\(\Rightarrow\sqrt{x}\le\sqrt{y}\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\) hay \(x\le4,5^2=20,25\)
Lại có x là số chính phương nên \(x\in\left(1;4;9;16\right)\)
Ta có bảng
x | 1 | 4 | 9 | 16 |
y | 64 | 49 | 36 | 25 |
Cái kết quả đó thì bạn tự thay vào rồi tính nhé
Vậy.................................................................................................................................
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)
=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương
=> \(\sqrt{503y}\) là số nguyên dương
mà 503 là số nguyên tố và 0 < y < 2012
=> y = 503
=> x = 503
Kết luận:...
Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?
\(\sqrt{x}+\sqrt{y}=9\Rightarrow\sqrt{x}=9-\sqrt{y}\)
Vì \(\sqrt{x}\ge0\Rightarrow9-\sqrt{y}\ge0\Rightarrow\sqrt{y}\le9\)
Do x, y nguyên dương nên \(\sqrt{y}\) = 1; 2; 3; 4; 5;6;7;8
=> tương ứng y = 1;4;9;16;25;36;49;64;
=> x = 64;49;36;25;16;9;4;1
vậy....