K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

theo bài ra ta có:

y+1 chia hết cho x

=> y chia hết cho x

1 chia hết cho x\

=> x E Ư(1)={ 1 và -1 }

vậy x= 1;-1

x+1 chia hết cho y

=> x chia hết cho y

1 chia hết cho y

=> y E Ư(1)={ 1 và -1 }

25 tháng 11 2019

Bài 1) ĐK : \(x,y\in N\)

a) \(2^{x+1}\cdot3^y=12\Leftrightarrow2^{x+1}\cdot3^y=2^2\cdot3\Rightarrow\hept{\begin{cases}x+1=2\\y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}.}\)(thoả mãn đ/k đề)

Vậy x = 1 và y = 3

b) \(\frac{10^x}{5^y}=20^y\Leftrightarrow\left(\frac{10}{5}\right)^y=\left(2^{10}\right)^y\Leftrightarrow2^y=2^{10y}\Leftrightarrow y=10y\Leftrightarrow9y=0\Leftrightarrow y=0\)(thoả mãn đ/k đề)

Vậy y = 0

(* Lưu ý: Từ chỗ y = 10y chuyển vế để nhận nghiệm y = 0, nếu chia ra sẽ có 1 = 10 (vô lý))

c)\(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\hept{\begin{cases}x=0\left(N\right)\\x=-1\left(L\right)\end{cases}}\)(loại vì x = -1 vì \(x\in N\))

Vậy x = 0

d) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow x+2=x+4\Leftrightarrow x-x=4-2\Leftrightarrow0x=4\)(vô lý)

Vậy \(x=\varnothing\)

Bài 2) ĐK: \(a,b\ne0\)

Bài này có vẻ như là một bài chứng minh, lần sau bạn nên ghi đầy đủ nhé ^^!

a) \(a+5b=\left(a+b\right)+4b\)mà \(\hept{\begin{cases}a+b⋮4\\4a⋮4\end{cases}\Rightarrow\left(a+b\right)+4b⋮4}\)hay \(a+5b⋮4\left(đpcm\right)\)

b) \(a-3b=\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Rightarrow\left(a+b\right)-4b⋮4}\)hay \(a-3b⋮4\left(đpcm\right)\)

c) \(3a-b=3a+3b-4b=3\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(a+b\right)⋮4\\4b⋮4\end{cases}}}\Rightarrow3\left(a+b\right)-4b⋮4\) hay \(3a-b⋮4\left(đpcm\right)\)

Đây chỉ là cách làm của mình, bạn có thể thay đổi cho phù hợp với bạn nhé!

Học tốt ^3^

25 tháng 11 2019

đpcm là j

7 tháng 7 2015

Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2) 
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24

2 tháng 7 2021

\(1.\)

Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)

+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)

+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)

+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)

+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)

+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)

2 tháng 7 2021

\(2.\)

Ta có: \(45=9.5\)

Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)

Ta được: \(71x10;71x15\)

+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)

+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)

Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)

2 tháng 3 2022

guyrt8yfjgdfjvxkfjghdgfkg123456781548656

6 tháng 6 2016

Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.

Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.

1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

  • Ta thấy y=0; 1 không phải là nghiệm của bài toán.
  • Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
  • Với y>=3 thì:
  • Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)

\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)

  • Thay vào (1) ta có:  \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)

\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)

\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)

\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)

\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)

Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.

  • Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
5 tháng 6 2016

câu 1:

y=z=vô nghiệm