Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x - 3|2014 ≥ 0 ; |6 + 2y|2015 ≥ 0
=> |x - 3|2014 + |6 + 2y|2015 ≥ 0
Mà để |x - 3|2014 + |6 + 2y|2015 ≤ 0 <=> |x - 3|2014 = 0 ; |6 + 2y|2015 = 0
=> x = 3 và y = - 3
Vậy x = 3 và y = - 3
Vì \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà đề lại cho \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)\(\Rightarrow\orbr{\begin{cases}\left|x-3\right|^{2014}=0\\\left|6+2y\right|^{2015}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-3=0\\6+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vì /x-3/2014 lớn hơn hoac bằng 0 ; /6+2y/^2015 lon hon hoac = 0.
=>/x-3/^2014+/6+2y/^2015 lớn hơn hoặc = 0
Mà để lại cho
/x-3/^2014+/6+2y/^2015 bé hơn hoặc =0
=>/x-3/^2014=0=>x-3=0=>x=3
=>/6+2y/^2015=0=>6+2y=0=>y=-3
Vì \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà đề lại cho : \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\Rightarrow\left|x-3\right|^{2014}=0;\left|6+2y\right|^{2015}=0\)
\(\Rightarrow x-3=0;6+2y=0\Rightarrow x=3;y=-3\)
Ta có:\(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|6+2y\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left|x-3\right|^{2014}\ge0\\\left|6+2y\right|^{2015}\ge0\end{cases}\Rightarrow}\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-3\right|^{2014}=0\\\left|6-2y\right|^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}}\)
Lời giải:
Ta thấy:
$|x+1|^3\geq 0$ với mọi $x$
$(y+2015)^{2014}\geq 0$ với mọi $y$
Do đó để tổng $|x+1|^3+(y+2015)^{2014}=0$ thì:
$|x+1|=y+2015=0$
$\Rightarrow x=-1; y=-2015$
\(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
theo đề:\(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)
\(\Rightarrow\left|x-3\right|^{2014}=\left|6+2y\right|^{2015}=0\Rightarrow x=3;2y=-6=>y=-3\)
vậy...
ta thấy : mọi trị tuyệt đối của nhiều số đều lớn hơn hoặc = 0
mà /x-3/2014+/6+2y/2015 phải \(\le\) 0
=> x - 3 = 0
=> 6 + 2y = 0
=> x = 3
y = -3
tick nha
\(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\) ≤ 0
\(\Rightarrow\)\(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\)=0
mà |x-3|;|6+2y|\(\ge\)0
\(\Rightarrow\)x=3;y=-3