Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5x+\left(-5y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(x+y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(-z\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z+\left(-5z\right)}{21}=\dfrac{0}{21}=0\)
Vậy \(A=0\)
\(\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}=\dfrac{-5x-5y-5z}{21}\)
= \(\dfrac{-5\left(x+y\right)-5z}{21}=\dfrac{-5\left(-z\right)-5z}{21}=\dfrac{5z-5z}{21}=\dfrac{0}{21}=0\)
Ta có; \(\dfrac{5x}{3}:\dfrac{10x^2+5x}{21}=\dfrac{5x}{3}.\dfrac{21}{10x^2+5x}=\dfrac{\left(5x\right)21}{3.5x.\left(2x+1\right)}=\dfrac{7}{2x+1}\)
là số nguyên.
Do đó \(7⋮2x+1\Leftrightarrow2x+1\in U\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng:
2x + 1 | -7 | -1 | 1 | 7 |
2x | -8 | -2 | 0 | 6 |
x | -4 | -1 | 0 | 3 |
KL | TM | TM | TM | TM |
Vậy \(x\in\left\{-4;-1;0;3\right\}\).
Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)
\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)
Nên:
\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)
Vậy A = 1
Chúc bạn học tốt!!
\(5x=8y=20z\)
\(\Leftrightarrow\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
dựa vào t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\Leftrightarrow=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}\)
Mà x-y-z=3
\(\Leftrightarrow\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
\(x=120.\dfrac{1}{5}=24\)
\(y=120.\dfrac{1}{8}=15\)
\(z=120.\dfrac{1}{20}=6\)
Vây...
Đặt \(A=\frac{5x}{3}:\frac{10x^2+5x}{21}\)
Ta có:\(A=\frac{5x}{3}:\frac{10x^2+5x}{21}\)
\(A=\frac{5x}{3}.\frac{21}{5x\left(2x+1\right)}\)
\(A=\frac{7}{2x+1}\left(ĐKXĐ:x\ne\frac{1}{2}\right)\)
Để A nguyên thì 7 phải chia hết cho 2x+1
Hay \(\left(2x+1\right)\inƯ\left(7\right)\)
Vậy Ư(7) là:[1,-1,7,-7]
Do đó ta có bảng sau:
2x+1 | -7 | -1 | 1 | 7 |
2x | -8 | -2 | 0 | 6 |
x | -4 | -1 | 0 | 3 |
Vậy để A ngyên thì \(x\in\left[-4;-1;0;3\right]\)
a) \(\frac{3-2x}{5}=\frac{2}{7}\)
\(\Rightarrow7.\left(3-2x\right)=2.5\)
\(\Rightarrow21-14x=10\)
\(\Rightarrow14x=11\)
\(\Rightarrow x=\frac{11}{14}\)
b) ( 5x - 6 ) : 7 = \(4\frac{1}{2}+0,25\%\)
( 5x - 6 ) : 7 = \(\frac{19}{4}\)
5x - 6 = \(\frac{19}{4}\). 7
5x - 6 = \(\frac{133}{4}\)
5x = \(\frac{133}{4}\)+ 6
5x = \(\frac{157}{4}\)
x = \(\frac{157}{4}\): 5
x = \(\frac{157}{20}\)