K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)

(x-3) phải thuộc ước của  28=[+-1,+-2,+,4,+-7,+-14,+-28}

x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá

16 tháng 12 2016

cảm ơn bạn nhiều

17 tháng 12 2016

\(\frac{3x^3+9x^2-x-5}{x+3}=\left(3x^2-1\right)-\frac{2}{x+3}\)là số nguyên khi x+3 là ước của 2, vậy x=-5;-4;-2;-1

31 tháng 12 2019

b) Ta có: \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\)

\(=\frac{x^3-1+x-1}{x^3-4x^2+x^2-4x+2x-8}\)

\(=\frac{\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)}{x^2\left(x-4\right)+x\left(x-4\right)+2\left(x-4\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+x+1+1\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+x+2\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)

\(=\frac{x-1}{x-4}\)

\(=\frac{\left(x-4\right)+3}{x-4}=1+\frac{3}{x-4}\)

Để \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\in Z\) <=> \(\frac{3}{x-4}\in Z\)

<=> 3 \(⋮\)x - 4

<=> x - 4 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng: 

 x - 4 1 -1 3 -3
  x 5 3 7 1

Vậy ...

31 tháng 12 2019

câu a) nữa bạn 

26 tháng 6 2017

Ta có:

\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)-1\)

\(M=3x^2-15xy-3y^2+15xy-3x^2+3y^2\)

\(M=0\left(đpcm\right)\)

26 tháng 6 2017

M=3x2-15xy-3y2+15xy-3x2+3y2-1

M=-1

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương