Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) A = \(\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 (loại) | -2 | 2 | 4 |
Vậy x = { -2,2,4 }
+) Bài B đề chưa rõ
+) C = \(\frac{11}{3x-1}\)
=> 3x-1 \(\in\) Ư(11) = { -1,-11,1,11 }
Ta có bảng :
3x-1 | -1 | -11 | 1 | 11 |
x | 0 (loại) | \(\frac{-10}{3}\) (loại) | \(\frac{2}{3}\) (loại) | 4 |
Vậy x = 4
+) M = \(\frac{x+2}{x-1}\)
Ta có: \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=\frac{x-1}{x-1}+\frac{3}{x-1}=1+\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Tiếp theo như bài A mình đã làm
E = \(\frac{x+7}{x+2}=\frac{x+2+5}{x+2}=\frac{x+2}{x+2}+\frac{5}{x+2}=1+\frac{5}{x+2}\)
=> x+2 \(\in\) Ư(5) = {-1,-5,1,5 }
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
x | -3 | -7 | -1 | 3 |
Vậy x = { -7,-3,-1,3 }
=> 2n - 7 chia hết cho n - 5
=> 2n - 10 + 3 chia hết cho n - 5
=> 2(n - 5) + 3 chia hết cho n - 5
Vì 2(n - 5) chia hết cho n - 5
=> 3 chia hết cho n - 5
=> n - 5 thuộc Ư(3)
=> n - 5 thuộc {1; -1; 3; -3}
=> n thuộc {6; 4; 8; 2}
Bài 1 :
\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)
\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)
\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)
Bài 2 :
a) Để A là phân số thì :
\(n-6\ne0\Rightarrow n\ne6\)
b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)
\(A=\frac{4}{7-6}=4\)
\(A=\frac{4}{-12-6}=\frac{-2}{9}\)
Bài 3 : [ Tương tự bài 2 ]
Bài 4 : [ Suy nghĩ thì ra ]
[ Hoq chắc - có gì sai thông cảm ]
Theo đề ra, ta có: \(x\inℤ\Leftrightarrow2x\inℤ\)
Ta có: \(2x+\frac{8}{5}-\frac{x}{5}=2x+\frac{\left(8-x\right)}{5}\)
Để \(L\inℤ\Leftrightarrow\frac{8-x}{5}\inℤ\)
\(\Leftrightarrow\left(8-x\right)⋮5\)
\(\Leftrightarrow\left(8-x\right)\in B\left(5\right)=\left\{x;\left|x=5g\right|g\inℤ\right\}\)
\(\Leftrightarrow\left(8-x\right)=5g\)
\(\Leftrightarrow x=8-5g\left(g\inℤ\right)\)
\(B=\frac{1}{2\left(x-1\right)^2}+3\)[ĐKXĐ:2(x-1)^2>0]
Để B đạt GTLN thì 2(x-1)^2 đạt GTNN
\(Tacó:2\left(x-1\right)^2\ge0\)do đk nên \(2\left(x-1\right)^2\ge1\)
Đẳng thức xảy ra :\(< =>\left(x-1\right)^2=\frac{1}{2}< =>x^2-x+\frac{1}{2}=0\)
Do PT trên vô nghiệm nên B không thể có GTLN
\(B=\frac{5}{2x+1}\)
=> 2x+1 \(\in\) Ư(5) = {-1,-5,1,5}
Ta có bảng :
Vậy x = {-3,-1,3}