Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):
\(\left|x+2\right|+\left|y\right|\ge\left|x+y+2\right|=\left|4+2\right|=6\)
Dấu đẳng thức xảy ra khi \(y\left(x+2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}y>0\\x>-2\\x+y=4\end{cases}}\)
TH2: \(\hept{\begin{cases}y< 0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}y< 0\\x< -2\\x+y=4\end{cases}}\)(loại vì khi đó x + y < 0)
Vậy \(\hept{\begin{cases}y>0\\x>-2\\x+y=4\end{cases}}\)
| 2x + 1 | + | 2x - 1 |
=> | 2x + 1 | = 12
2x = 12 - 1
2x = 11
x = 11 : 2
x = 5,5
=> | 2x - 1 | = 12
2x = 12 + 1
2x = 13
x = 13 : 2
x = 6,5
Ta có: 2005=|x-4|+|x-10|+|x+101|+|x+990|+|x+1000|
2005=|4-x|+|10-x|+|x+101|+|x+990|+|x+1000|
Mặt khác ta có |4-x|+|10-x|+|x+990|+|x+1000| lớn hơn hoặc bằng |4-x+10-x+x+990+x+1000|=2004
Ta lại có |4-x|+|10-x|+|x+101|+|x+990|+|x+1000|=2005
nếu |4-x|+|10-x|+|x+990|+|x+1000|=2005
=>|x+101|=0
=>x=-101
Nếu |4-x|+|10-x|+|x+990|+|x+1000|=2004
=>|x+101|=1
=>x=-100
Thử lại ta thấy x=-100 là thõa mãn đề bài
Lập bảng xét dấu là ra thôi bài này dễ mà
Ix-1I và I1-xI là 2 số đối nhau nên tổng của chúng luôn =0 với mọi x.
=> 4-x=0 => x=4
Đs: x=4