Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow\frac{3}{7}x=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{9}\)
giá trị nhỏ nhất của biểu thức
B= 1/2(x-1/2)^2+|2x-1|-3/2
(x-1/2)^2 và |2x-1| luôn không (-)
B nhỏ nhất =-3/2
khi x=1/2
1/ 76; 104
2/ 2,3
3/ 10
4/ a+b = 34,4
5/ x+y= 0,7
6/ a.b= 17,28
7/ -2,5
8/ 2
9/ -1,7
10/ 11
Violympic toán vòng 5 đúng không? Mk làm hết rồi
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
Câu 1: Theo bài ta có: \(\frac{a}{-2,4}=\frac{b}{3,8}\) và 2a + b = -6
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{-2,4}=\frac{b}{3,8}=\frac{2a}{-4,8}=\frac{b}{3,8}=\frac{-6}{-4,8+3,8}=\frac{-6}{-1}=6\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=6.\left(-2,4\right)\\b=6.3,8\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=-14,4\\b=22,8\end{array}\right.\)
=> a + b = -14,4 + 22,8 = 8,4
Câu 2: Theo bài ta có: \(\frac{a}{3}=\frac{b}{5}\) và 3a - b =17,2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{3a}{9}=\frac{b}{5}=\frac{3a-b}{9-5}=\frac{17,2}{4}=4,3\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=4,3.3\\b=4,3.5\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=12,9\\b=21,5\end{array}\right.\)
=> a + b = 12,9 + 21,5 = 34,4
Câu 6: Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\) => \(\frac{a^2}{9}=\frac{b^2}{16}\)
và a2 + b3 = 36
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\) = 1,44
\(\Rightarrow\left[\begin{array}{nghiempt}a^2=12,96\\b^2=23,04\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=\sqrt{12,96}=3,6;a=-\sqrt{12,96}=-3,6\\b=\sqrt{23,04}=4,8;b=-\sqrt{23,04}=-4,8\end{array}\right.\)
\(\Rightarrow\) a . b = 3,6 . 4,8 = -3,6 . (-4,8) = 17,28
Vậy giá trị a . b = 17,28
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)