Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
a) ĐKXĐ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\\x\ne9\end{matrix}\right.\)
\(A=\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
b)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\sqrt{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-\sqrt{3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}}{\sqrt{x}-3}=0\\ \Leftrightarrow\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}=0\)
(Bạn thử tìm x đi nha, mk ra số xấu lắm TvT)
c)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
Để A nhận giá trị nguyên thì \(5⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)\)
Ta có bảng sau:
\(\sqrt{x}-3\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 4 | 2 | 8 | -2 |
\(x\) | 16 | 4 | 64 | loại |
Vậy với x=16; x=4 và x=64 thì A nhận giá trị nguyên
a) \(A=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=-1+\frac{4}{\sqrt{x}-2}\)
Để \(A\in Z\Leftrightarrow\sqrt{x}-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-2;0;1;3;4;6\right\}\)
Mà \(x\in Z;\sqrt{x}\ge0\Rightarrow x\in\left\{0;1;9;16;36\right\}\)
b)\(A=\frac{4\sqrt{x}-2+3}{2\sqrt{x}-1}=2+\frac{3}{2\sqrt{x}-1}\)
Để \(A\in Z\Leftrightarrow2\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-1;0;1;2\right\}\Leftrightarrow x\in\left\{0;1;4\right\}\)
a) A= \(\frac{-\sqrt{x}+6}{\sqrt{x}-2}=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}=\frac{4}{\sqrt{x}-2}-1\)
⇒ \(\sqrt{x}-2\inƯ\left(4\right)\) ⇒ x = 36