Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(x\le-1\)
ta có phương trình \(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow-x-1-2x+5-x+9=10\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\frac{3}{4}\left(\text{loại}\right)\)
TH2: \(-1< x\le\frac{5}{2}\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1-2x+5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)
Th3: \(\frac{5}{2}< x\le9\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(\text{loại}\right)\)
th4:\(x>9\)thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5+x-9=10\)
\(\Leftrightarrow4x=23\Leftrightarrow x=\frac{23}{4}\left(\text{loại}\right)\)
Vậy x=5/2
a)Ta có :\(\left|x+6\right|+\left|4-x\right|\ge\left|x+6+4-x\right|=\left|10\right|=10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+6\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+6\ge0\\4-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+6\le0\\4-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\x\le4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-6\\x\ge4\end{cases}}\)(Vô lí)
\(\Leftrightarrow-6\le x\le4\)
Vậy \(-6\le x\le4\)
b)Ta có :\(\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|3\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le1\\x\le4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)