Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(2x^3=2^4\)
\(\Rightarrow x^3=2^4:2\)
\(\Rightarrow x^3=2^3\)
\(\Rightarrow x=2\)
tíc mình nha
1/ 2 . x3 = 24 => x3 = 24 : 2 => x3 = 23 => x = 2
2/ Ta có: Số số hạng của X là: (87 - 3) : 3 + 1 = 29 (số hạng)
=> X = 3 + 6 + 9 + ..... + 87 = (87 + 3) x 29 : 2 = 1305
3/ A = { 50 ; 52 ; 54 ; 56 ; 58 ; 60 }
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
\(2^{x+4}-2^{x+3}-2^{x+2}-2^{x+1}-2=62\)
\(\Rightarrow\) \(2^x.2^4-2^x.2^3-2^x.2^2-2^x.2^1=64\)
\(\Rightarrow\) \(2^x.\left(2^4-2^3-2^2-2^1\right)=64\)
\(\Rightarrow\) \(2^x.\left(16-8-4-2\right)=64\)
\(\Rightarrow\) \(2^x.2=64\)
\(\Rightarrow\) \(2^x=32\)
\(\Rightarrow\) \(2^x=2^5\)
\(\Rightarrow\) \(x=5\)
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
1/4 . 2/6 . 3/8 . ... .30/62 .31/64 = 2^x
(1/2 . 1/2).(2/3 . 1/2).(3/4 . 1/2). ... .(30/31 . 1/2).(31/32 . 1/2) = 2^x
(1/2.1/2. ... .1/2).(1/2 . 2/3 . 3/4. ... .30/31 . 31/32) = 2^x
(31 số 1/2)
(1/2)^31. = 2^x
=> 0=x+36
x=0-36
x=-36
Vậy x=-36
Theo mk nghĩ,mk làm đúng nha .Tk cho mk
Để mk sửa phần này một chút
\((\frac{1}{2})^{31}\cdot\frac{1\cdot2\cdot3.....30\cdot31}{2\cdot3\cdot4.....31\cdot32}=2^x\)
\(\frac{1^{31}}{2^{31}}\cdot\frac{1}{32}=2^x\)
\(\frac{1}{2^{31}}\cdot\frac{1}{2^5}=2^x\)
\(\frac{1}{2^{36}}=2^x\)
\(1=2^x\cdot2^{36}\)
\(2^0=2^x+36\)
Rồi bn tự suy luận nha
x + 2x + 3x + ... + 100x = 5050
x ( 1 + 2 + 3 + ... + 100 ) = 5050
x { ( 100 + 1 ) . [ ( 100 - 1 ) : 1 + 1 ] : 2 } = 5050
x { 101 . 100 : 2 } = 5050
x . 5050 = 5050
x = 5050 : 5050
x = 1
b ) ( x + 2 ) + ( x + 4 ) + ( x + 6 ) + ... + ( x + 100 ) = 2650
Số số hạng cũng là số x :
( 100 - 2 ) : 2 + 1 = 50 ( số )
x . 50 + ( 2 + 4 + 6 + ... + 100 ) = 2650
x . 50 + [ ( 100 + 2 ) . 50 : 2 ] = 2650
x . 50 + 2550 = 2650
x . 50 = 2650 - 2550
x . 50 = 100
x = 100 : 50
x = 2
\(\left(x+2\right)+\left(x+4\right)+\left(x+6\right)+...+\left(x+62\right)=3028\)
\(\left(x+x+x+...+x\right)+\left(2+4+6+...+62\right)=3028\)
\(\left(x+x+x+...+x\right)+992=3028\)
\(31x=3028-992\)
\(31x=2036\)
\(x=2036:31\)
\(x=65,6\)
Chắc là làm sai
(x+2) + (x+4) + (x+6) + ...... + (x+62) = 3028
x + 2 + x + 4 + x + 6 + .... + x + 62 = 3028
( x + x + x + ........ + x) + ( 2 + 4 + 6 + .... + 62) = 3028
Ta có tổng 2 + 4 + 6 + .... + 62
Nhận xét: 4 - 2 = 2
6 - 4 = 2
62 - 60 = 2
...........
Vậy 2 số hạng liền kề của tổng cách nhau 2 đơn vị.
Tổng trên có số số hạng là: (62-2) : 2 + 1 = 31 (số hạng)
Vậy cũng có 31 số hạng x.
Vận dụng tính chất tính tổng một dãy số cách đều, ta có:
2 + 4 + 6 + .... + 62 = (62+2) . 31 : 2 = 992
Vậy ta có: x . 31 + 992 = 3028
x . 31 = 3028 - 992
x . 31 = 2036
x = 2036 : 31
x = 2036/31