Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra, ta có:
425 : x dư 29\(\Rightarrow396⋮x\)
857 : x dư 32\(\Rightarrow825⋮x\)
\(\Rightarrow x\inƯC\left\{396;825\right\}\)
Ta có:
\(396=2^2.3^2.11\)
\(825=3.5^2.11\)
\(\RightarrowƯCLN\left(396;825\right)=3.11=33\)
\(\RightarrowƯC\left(396;825\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)
Mà \(x\inℕ\Rightarrow x\in\left\{1;3;11;33\right\}\)
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
Gọi số cần tìm là a . ( a \(\in\)N ; a \(\le\)999 )
Theo đề bài , ta có :
a : 8 dư 7 \(\Rightarrow\)( a + 1 ) \(⋮\)8 .
a : 31 dư 28 \(\Rightarrow\)( a + 3 ) \(⋮\)28
Ta thấy : ( a + 1 ) + 64 \(⋮\)8 = ( a + 3 ) + 62 \(⋮\) 31
\(\Rightarrow\)a + 65 \(⋮\)8 và 31
Mà ( 8 ; 31 ) = 1
\(\Rightarrow\)a + 65 \(⋮\) 248
Vì a \(\le\)999 \(\Rightarrow\)a + 65 \(\le\)1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng là số tự nhiên lớn nhất thỏa mãn \(\frac{a+56}{248}=4\)
\(\Rightarrow a=927\)
Vậy số cần tìm là \(927\)
1. Câu hỏi của buikhanhphuong - Toán lớp 6 - Học toán với OnlineMath
a là ƯC của 355 – 13 = 342 và 836 – 8 = 828; a > 13
ĐS: a = 18
Trả lời:
355 chia a dư 13 => 355 - 13 = 342 chia hết cho a. và a > 13
836 chia a dư 8 => 836 - 8 = 828 chia hết cho a.
=> a là U ( 342 ; 836 ) U ( 342 ; 836 )
mà 342 = 2 x 9 x 19
828 = 2 x 2 x 9 x 23
=> U ( 342 ; 836 ) = U( 18 ) = { 1 ; 2 ; 3 ; 6 ; 9 ; 18 }
Vì: a > 13
=> a = 18.
Gọi số tự nhiên cần tìm là n (n thuộc N; n \(\ge\)999)
Khi đó : n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 => (n+3) chia hết cho 31
Ta có ( n+ 1) + 64 chia hết cho 8 = (n+3) + 62 chia hết cho 31
Vậy (n+65) chia hết cho 31 và 8
Mà (31,8) = 1 => n+65 chia hết cho 248
Vì n \(\ge\)999 nên (n+65) 1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn \
=> n = 927
Vậy số tự nhiên cần tìm là : 927 .
Theo bai ra ta co:
A=8x+7
A=31x+28
(voi x, b nguyen duong va nho nhat)
=>8x+7=31b+28
=>8x-31b=21
=>x=(21+31b)/8
=3+4b-(3+b)/8
x nguyen duong va nho nhat khi 3+b nho nhat va chia het cho 8; (3+b)/8 < 3+4b
=>b=5
=>x=(21+31b)/8=22
Thay vao x ta được x=8a+7=8.22+7=183
Vậy x=183