Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a, x2 - 10x = -25 b, 4x2 - 4x = -1 c, 8x3 +12x2 +6x+1=0
=>x2-10x+25=0 =>(2x)2-2.2x.1+1=0 =>(2x+1)3=0
=>(x-5)2=0 =>(2x-1)2=0 =>2x+1=0
=>x-5=0 =>2x-1=0 =>x = -1/2
=>x=5 =>x=1/2
Áp dụng hằng đẳng thức
a) x2+16x+64
=> x2+2.8x+82
=> (x+8)2
b) 25x2+10x+1
=> (5x+1)2
c) x2-12x+36
=> (x+6)2
d) 4x2-4x+1
=> (2x-1)2
e) x2-2x+1
=> (x-1)2
Giải:
1) \(\left(x-6\right)\left(x^2+6x+36\right)-\left(x+4\right)^3=\left(x-2\right)^3+\left(x+5\right)\left(x^2-10x+25\right)-\left(2x^3+6x^2\right)\)
\(\Leftrightarrow x^3-216-\left(x^3+12x^2+48x+64\right)=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)
\(\Leftrightarrow x^3-216-x^3-12x^2-48x-64=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)
\(\Leftrightarrow-280-12x^2-48x=-12x^2+12x+117\)
\(\Leftrightarrow-280-48x-12x-117=0\)
\(\Leftrightarrow-397-60x=0\)
\(\Leftrightarrow-60x=397\)
\(\Leftrightarrow x=-\dfrac{397}{60}\)
Vậy ...
2) \(\left(2x+3\right)^3-\left(2x+5\right)\left(4x^2-10x+25\right)=\left(6x-1\right)^2-\left(x-2\right)\left(x^2+2x+4\right)+x^3\)
\(\Leftrightarrow8x^3+36x^2+54x+27-\left(8x^3+125\right)=36x^2-12x+1-\left(x^3-8\right)+x^3\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3-125=36x^2-12x+1-x^3+8+x^3\)
\(\Leftrightarrow54x-98=-12x+9\)
\(\Leftrightarrow54x+12x=9+98\)
\(\Leftrightarrow66x=107\)
\(\Leftrightarrow x=\dfrac{107}{66}\)
Vậy ...
a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)
\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 1/5 ; y = -3/2
b, \(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 2 ; y = -3
\(a)\)
\(25x^2+4y^2-10x+12x+10=0\)
\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)
\(b)\)
\(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)
c, C= 4x^2 -12x +25
= 4x^2 -12x + 9+16
= (2x -3)^2 +16
ta có (2x-3)^2 >,= 0 với mọi x
=> (2x-3)^2 +16 >,=16 với mọi x
dấu bằng xảy ra khi (2x-3) ^2 =0
=> 2x-3 = 0
=> 2x =3
=> x =1,5
vậy .............
d, D = 2x^2 -8x -5
D= 2(x^2 -4x +4) -13
D= 2(x-2)^2 -13
ta có 2 (x-2)^2 >,= 0 với mọi x
=> 2(x-2)^2 -13 >,= -13 với mọi x
dấu = xảy ra khi 2(x-2)^2 =0
=> (x-2)^2=0
=>x-2 =0
=> x=2
vậy .............
a)Ta có : 9(a + b)2 - 4(a - 2b)2
= [3(a + b) - 2(a - 2b)].[3(a + b) + 2(a - 2b)]
= (3a + 3b - 2a + 4b)(3a + 3b + 2a - 4b)
= (a + 7b)(5a - b)
b)x2-12x+36=0
(x-6)2=0
x-6=0
x=6
a)x2-10x+25=0
(x-5)2=0
x-5=0
x=5