K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Đoạn cuối đáng là \(\frac{3}{x.\left(x+3\right)}\) nhưng bạn ghi lộn nha!

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)

\(\Rightarrow\frac{x+2}{x+3}=\frac{100}{101}\Rightarrow x=100-2\)

\(\Rightarrow x=98\)

9 tháng 7 2016

\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{1}{x.\left(x+3\right)}=\frac{100}{101}\)

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+........+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)

\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)

\(\Rightarrow x+3=101\)

\(\Rightarrow x=98\)

11 tháng 7 2016

\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x\left(x+3\right)}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)

\(=1-\frac{1}{x+3}\)

\(=\frac{x+2}{x+3}=\frac{100}{101}\)

\(\Rightarrow x=98\)

11 tháng 7 2016

\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)

\(A=1-\frac{1}{x+3}=\frac{100}{101}\)

\(\frac{1}{x+3}=1-\frac{100}{101}=\frac{1}{101}\)

=> x + 3 = 101

=> x = 101 - 3

=> x = 98

Vậy x = 98

Ủng hộ mk nha ^_-

11 tháng 7 2016

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)

\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{\left(x+3\right)}=\frac{100}{101}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)

\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)

\(\Rightarrow x+3=101\)

\(=>x=98\)

11 tháng 7 2016

                               \(D=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)

                                \(D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)

                               \(D=1-\frac{1}{x+3}=\frac{100}{101}\)

                            \(D=\frac{1}{x+3}=1-\frac{100}{101}\)

                             \(D=\frac{1}{x+3}=\frac{1}{101}\)

                         \(\Rightarrow x+3=101\Rightarrow x=98\)

                      Ủng hộ mk nha ^_^

16 tháng 7 2015

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

                  \(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)

                   \(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\) 

                              \(\frac{1}{x+3}=1-\frac{2001}{2002}\) 

                               \(\frac{1}{x+3}=\frac{1}{2002}\) 

                                \(\frac{1}{x}=\frac{1}{2002-3}\) 

                                 \(\frac{1}{x}=\frac{1}{1999}\)

Vậy x = 1999

14 tháng 5 2016

đặt VT là A ta có:

\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(3A=1-\frac{1}{x+3}\)

\(A=\left(1-\frac{1}{x+3}\right):3\)

thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

=>x+3=19

=>x=16

15 tháng 5 2016

có thể giải cụ thể ra được ko

1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017

(3/1.4+3/4.7+3/7.10+...+ 3/x(x+3)).1/3=672/2017

(1/1-1/4+1/4-1/7+1/7-1/10+.....+(x+3)-x/x.(x+3)).1/3=672/2017

(1/1-1/(x+3)).1/3=672/2017

1/1-1/(x+3)= 672/2017:1/3

1/1-1/(x+3) = 2016/2017

1/(x+3)=1/1-2016/2017

1/(x+3)=1/2017

x+3=2017

x= 2017-3

x= 2014

MIK CHẮC CHẮN 100% LÀ ĐÚNG, DẠNG TOÁN NÀY MIK LM NHIỀU R

HOK TỐT 

27 tháng 4 2019

\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{x+3}\right)=\frac{672}{2017}\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}:\frac{1}{3}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}\cdot3=\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+3}=\frac{2017}{2017}-\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow x+3=2017\Rightarrow x=2017-3\Rightarrow x=2014\)

8 tháng 8 2018

Làm từng phần nha bạn

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)

Đặt \(A+x=\frac{299}{301}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)

\(A=1-\frac{1}{301}\)

\(A=\frac{300}{301}\)

=> \(\frac{300}{301}+x=\frac{299}{301}\)

\(x=\frac{299-300}{301}\)

\(x=-\frac{1}{301}\)

8 tháng 8 2018

\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)

\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=\frac{303}{304}\)

\(A=\frac{505}{304}\)