Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$
$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$
Với $n$ nguyên, để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$
Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:
$n^2+n+1\in\left\{1; 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
a, x chia hết cho 12; 21; 28
=> x thuộc BC(12; 21; 28) (1)
12 = 22.3
21 = 3.7
28 = 22.7
BCNN(12; 21; 28) = 22.3.7 = 4.3.7 = 84
BC(12; 21; 28) = B(84) = {0; 84; 168;....} (2)
(1)(2) => x thuộc {0; 84; 168;....}
a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)
kho kho kho kho kho