K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

\(x^3+3x^2+3x+9=x^2\left(x+3\right)+3\left(x+3\right)=\left(x^2+3\right)\left(x+3\right)\).
Số nguyên  \(\left(x^2+3\right)\left(x+3\right)\) luôn có hai ước là \(x^2+3,x+3\) nên để \(\left(x^2+3\right)\left(x+3\right)\)là nguyên tố thì một trong hai ước của nó phải bằng 1.
Vì \(x^2+3>1,\) với mọi x nên \(x+3=1\Leftrightarrow x=-2\).
Thay \(x=-2\) vào \(\left(x^2+3\right)\left(x+3\right)\) ta được \(\left(x^2+3\right)\left(x+3\right)=\left[\left(-2\right)^2+3\right]\left(-2+3\right)=7\). (thỏa mãn).
Vậy n = -2 là giá trị cần tìm.
 

28 tháng 4 2024

a)

Xét x=0 => A = 1 không là số nguyên tố

Xét x=1 => A= 3 là số nguyên tố (chọn)

Xét x>1

Có A = x14+ x13 + 1 = x14 - x+ x13 - x + x+ x + 1

A = x2(x12-1) + x(x12-1) + x2+x+1

A = (x2+x)(x3*4-1) + x2 + x + 1

Có x3*4 chia hết cho x3

=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)

=> x3*4-1 chia hết cho x2+x+1

=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)

=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)

 

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp