K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

\(\sqrt{19+8\sqrt{3}}-\sqrt{19-8\sqrt{3}}\)

\(=\sqrt{4^2+8\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{4^2-8\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}-4\right)^2}\)

\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}-4\right|\)

\(=\sqrt{3}+4-\sqrt{3}+4\)

\(=8\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1^2}+\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1^2}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

23 tháng 6 2018

\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :

\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0

\(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )

⇔ x ∈ ∅

b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :

\(x^2+4x+5\) ≥ 0

Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)

Vậy , ........

c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :

\(2x^2+4x+5\) ≥ 0

Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)

Vậy ,.........

Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)

\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

1 tháng 3 2017

bình phương rồi cauchy-schwarz

1 tháng 3 2017

-6.258342613

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

Câu 1: 

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)

\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)

b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:

\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)

\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)