\(|x-4|+|x+6|\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(G=\left|x-4\right|+\left|x+6\right|\)

\(G=\left|x-4\right|+\left|-\left(x+6\right)\right|\)

\(G=\left|x-4\right|+\left|-6-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(G=\left|x-4\right|+\left|-6-x\right|\ge\left|x-4-6-x\right|=\left|-10\right|=10\)

Đẳng thức xảy ra khi \(ab\ge0\)

=> \(\left(x-4\right)\left(-6-x\right)\ge0\)

Xét hai trường hợp :

1/ \(\hept{\begin{cases}x-4\ge0\\-6-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\-x\ge6\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\x\le-6\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}x-4\le0\\-6-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\-x\le6\end{cases}\Rightarrow}\hept{\begin{cases}x\le4\\x\ge-6\end{cases}}\Rightarrow-6\le x\le4\)

=> GMin = 10 , đạt được khi \(-6\le x\le4\)

15 tháng 8 2020

\(G=|x-4|+|x+6|=|-\left(x-4\right)|+|x+6|\)

\(=|-x+4|+|x+6|=|4-x|+|x+6|\)

Sử dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)ta có :

\(|4-x|+|x+6|\ge|4-x+x+6|=|10|=10\)

Dấu = xảy ra \(\Leftrightarrow\left(4-x\right)\left(x+6\right)\ge0\Leftrightarrow-6\le x\le4\)

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

3 tháng 1 2019

A=3x-17/4-x

=>(-1)A=17-3x/4-x

=>(-1)A=12-3x+5/4-x

=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)

Để A có GTNN=>-3-(5/4-x) có GTNN 

=>5/4-x có GTLN

=>4-x có GTNN =>=>4-x=-5=>x=9

=>A=3.9-17/4-9

=>A=10/-5

=>A=-2

Vậy..........

3 tháng 1 2019

GTNN là gì vậy

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

8 tháng 7 2021

Để A đạt GTLN 

=> 6 - x  đạt GTNN 

=> 6 - x = 1 (Vì x nguyên) (nếu 6 - x < 0 thì A < 0 => A không đạt GTLN) 

=> x = 5

Vậy x = 5 thì A đạt GTLN

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak