Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:/3x-3/\(\ge\)0;//x-4/-3/\(\ge\)0 =>/3x-3/+//x-4/-3/ \(\ge\)0 =>a\(\ge\)0 => gtnn của a=0;
để a có gtnn = 0 thì
\(\hept{\begin{cases}\left|3x-3\right|=0\\\left|x-4\right|-3=0\end{cases}}\)=>\(\hept{\begin{cases}3x-3=0\\\left|x-4\right|=3\end{cases}}\)\(\hept{\begin{cases}3x=3\\x-4=3\\x-4=-3\end{cases}}\)=>\(\hept{\begin{cases}x=1\\x=7\\x=1\end{cases}}\)
Vậy x\(\in\)(1;7)
tìm giá trị của x để biểu thức A=|3x-3|+||x-4|-3| có giá trị nhỏ nhất,tìm giá trị đó.
Tìm GTLN, GTNN ( nếu có )
a, A= 3/x2 - 16/ -25
b,B= 100- 35/ x - 4 /
c, C= / 3x - 5 / + / 8+ 3x / - 15
Z=|3x-3|+|x-4|-|3|
=3|x-1|+|x-4|-3
Ta có \(\left|x-1\right|\ge x-1\)
\(2\left|x-1\right|\ge0\)
\(\left|x-4\right|\ge4-x\)
\(\Rightarrow Z\ge x-1+0+4-x-3=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3