K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) (x-1)*(x+2)-(x-3)*(-x+4)=19

\(\Leftrightarrow x^2+2x-x-2-\left(-x^2+4x+3-12\right)=19\)

\(\Leftrightarrow x^2+2x-x-2+x^2-4x-3+12=19\)

\(\Leftrightarrow2x^2-3x+7-19=0\)

\(\Leftrightarrow2x^2-3x-12=0\)

Đề sai??

b) (2x -1)*(3x+5)-(6x-1)*(6x+1)=(-17)

\(\Leftrightarrow6x^2+10x-3x-5-\left(36x^2+6x-6x-1\right)=-17\)

\(\Leftrightarrow6x^2+10x-3x-5-36x^2-6x+6x+1=-17\)

\(\Leftrightarrow-30x^2+7x-4+17=0\)

\(\Leftrightarrow-30x^2+7x+13=0\)

???

2 tháng 9 2020

B1: 

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

B2:

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-4x+4-16=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-5x+5x-25=x^2-25\)

Bài 2 :

a) \(x^2+2x+1=x^2-x-x+1\)

\(=x.\left(x-1\right)-\left(x+1\right)=\left(x-1\right)^2\)

b) \(x^2+2x+1=x^2+x+x+1\)

\(=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)

c) \(x^2-6x+9=x^2-3x-3x+9\)

\(=x.\left(x-3\right)-3.\left(x-3\right)=\left(x-3\right)^2\)

15 tháng 8 2017

1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)

2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:

t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)

=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)

tạm thế này đã, phải đi ăn cơm rồi :v

15 tháng 8 2017

giúp mình nốt 4,5 nha

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

Bài 2 :

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16

b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25

2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2

(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2

x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2 

19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

24 tháng 6 2018

a)\(\left(x+1\right)\left(x+3\right)-x\left(x-2\right)=7\)

\(x\left(x+3\right)+x+3-x^2+2x=7\)

\(x^2+3x+x+3-x^2+2x=7\)

\(6x+3=7\)

\(6x=4\)

\(x=\frac{4}{6}=\frac{2}{3}\)

Vậy  \(x=\frac{2}{3}\)

b) \(2x\left(3x+5\right)-x\left(6x-1\right)=33\)

\(6x^2+10x-6x^2-x=33\)

\(9x=33\)

\(x=\frac{33}{9}\)

Vậy \(x=\frac{33}{9}\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

29 tháng 9 2016
X^4+x^2+1 X^4+2x^2+1_x^2 =(x^2+1)^2-x^2 Hang dang thuc 3 =
29 tháng 9 2016

1

(x2-8)2+36

=x4-16x2+64+36

=x4+20x2+100-36x2

=(x2+10)2-(6x)2

HĐT số 3