Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(3x+5\right)^2-2\left(2x+3\right)\left(3x+5\right)+\left(2x+3\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left[\left(3x+5\right)-\left(2x+3\right)\right]^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(3x+5-2x-3\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(x+2\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(x+2\right)^3-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)^2.\left(x+2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{-2;-1\right\}\)
\(a.\frac{x-6}{x-4}=\frac{x}{x-2}\\\Leftrightarrow \frac{\left(x-6\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}\\\Leftrightarrow \left(x-6\right)\left(x-2\right)=x\left(x-4\right)\\\Leftrightarrow \left(x-6\right)\left(x-2\right)-x\left(x-4\right)=0\\ \Leftrightarrow x^2-2x-6x+12-x^2+4x=0\\\Leftrightarrow -4x+12=0\\\Leftrightarrow -4x=-12\\ \Leftrightarrow x=3\)
\(b.1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\\ \Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=0\\ \Leftrightarrow x^2-x-2x+3+2x^2-2x-5x+5-3x^2+6x+5x-10=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \)
tìm x
a.(x−2)\(^3\)−(x−3)(x\(^2\)+3x+9)+6(x+1)\(^2\)
b.(x+2)(x\(^2\)−2x+4x\(^2\)−2x+4)-x(x\(^2\)+2)=15
Câu a thiếu kết quả để tìm
Câu b)
(x + 2)(x2 - 2x + 4x2 - 2x + 4) - x(x2 + 2) = 15
=> (x + 2)(x2 - 4x + 4x2 + 4) - x3 + 2x = 15
=> (x + 2)(5x2 - 4x + 4) - x3 + 2x = 15
=> x(5x2 - 4x + 4) + 2(5x2 - 4x + 4) - x3 + 2x = 15
=> 5x3 - 4x2 + 4x + 10x2 - 8x + 8 - x3 + 2x = 15
=> (5x3 - x3) + (-4x2 + 10x2) + (4x - 8x + 2x) + 8 = 15
=> 4x3 + 6x2 - 2x + 8 = 15
=> 2(2x3 + 3x2 - x + 4) = 15
=> (2x3 + 3x2 - x + 4) = 15/2 => vô nghiệm
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Rightarrow\left(x^3+2^3\right)-x^3-2x=15\)
\(\Rightarrow x^3+8-x^3-2x=15\)
\(\Rightarrow8-2x=15\)
=>2x=8-15=-7
=>x=\(\frac{-7}{2}\)
\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^4-2x^2+1\right)-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(-3x^2\right)=0\)
=>x2-1=0 hoặc -3x2=0
+)Nếu x2-1=0
=>x2=1
=>x=-1 hoặc x=1
+)Nếu -3x2=0
=>3x2=0
=>x2=0
=>x=0
Vậy x=-1 hoặc x=1 hoặc x=0