Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
=>4x-27=1
hay x=7
b: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x+1\right)^2+3x^2=15\)
\(\Leftrightarrow-9x^2+27x+6x^2+12x+6+3x^2=15\)
=>39x+6=15
hay x=3/13
c: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
hay x=14
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
1. (3x - 5)2 - (3x + 1)2 = 8
=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8
=> -6(6x - 4) = 8
=> 6x - 4 = \(\dfrac{-4}{3}\)
\(\Rightarrow x=\dfrac{4}{9}\)
2) 2x(8x - 3) - (4x - 3)2 = 27
=> 16x2 - 6x - 16x2 + 24x - 9 = 27
=> 18x - 9 = 27
=> x = 2
3) (2x - 3)2 - (2x + 1)2 = 3
=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3
=> -4(4x - 2) = 3
=> 4x - 2 = \(\dfrac{-3}{4}\)
\(\Rightarrow x=\dfrac{5}{16}\)
4) (x + 5)2 - x2 = 45
=> (x + 5 - x)(x + 5 + x) = 45
=> 5(2x + 5) = 45
=> 2x + 5 = 9
=> x = 2
5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18
=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18
=> -9x2 + 27x + 9x2 + 18x + 9 = 18
=> 45x + 9 = 18
=> 45x = 9
=> x = \(\dfrac{1}{5}\)
6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13
=> x (x2 - 16) - (x3 - 125) = 13
=> x3 - 16x - x3 + 125 = 13
=> -16x = -112
=> x = 7.
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
<=> \(x^3-9x^2+27x-27\) \(-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)+3x^2=-33\)
<=> \(x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
<=> \(-6x^2+39x+6=-33\)
<=> \(6x^2-39x-6=33\)
<=> \(6x^2-39x-39=0\)
<=> \(6\left(x^2-\frac{39}{6}x-\frac{39}{6}\right)=0\)
<=> \(x^2-2.x.\frac{39}{12}+\frac{1521}{144}-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}\right)^2-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}-\frac{\sqrt{273}}{4}\right)\left(x-\frac{39}{12}+\frac{\sqrt{273}}{4}\right)=0\)
<=> \(\left(x-\frac{13+\sqrt{273}}{4}\right).\left(x-\frac{13-\sqrt{273}}{4}\right)=0\)
<=> \(x=\frac{13+\sqrt{273}}{4}\) ( h ) \(x=\frac{13-\sqrt{273}}{4}\)
học tốt
a) Ta có: \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left(6x-2\right)^2-2\cdot\left(6x-2\right)\left(5x-2\right)+\left(5x-2\right)^2=0\)
\(\Leftrightarrow\left(6x-2-5x+2\right)^2=0\)
\(\Leftrightarrow x^2=0\)
hay x=0
Vậy: x=0
b) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)-5=0\)
\(\Leftrightarrow x^3-6-x^2+4x=0\)
\(\Leftrightarrow4x-6=0\)
\(\Leftrightarrow4x=6\)
hay \(x=\frac{3}{2}\)
Vậy: \(x=\frac{3}{2}\)
c) Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+27\right)+3x^2-12-2=0\)
\(\Leftrightarrow x^3+3x-15-x^3-27=0\)
\(\Leftrightarrow3x-42=0\)
\(\Leftrightarrow3x=42\)
hay x=14
Vậy: x=14
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
=>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x-40=2
=>x=42/3=14