Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1-4\right)-16=0\)
\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1\right)-4=0\)
\(\Leftrightarrow\left(2x^2-3x-1-4\right)\left(2x^2-3x-1+1\right)=0\)
\(\Leftrightarrow\left(2x^2-3x-5\right)\left(2x^2-3x\right)=0\)
\(\Leftrightarrow\left(2x^2-5x+2x-5\right)\cdot x\cdot\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)x\left(2x-3\right)=0\)
hay \(x\in\left\{\dfrac{5}{2};-1;0;\dfrac{3}{2}\right\}\)
b: \(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{-2;1\right\}\)
x2 - 5x - 36 = 0
=> x2 - 9x + 4x - 36 = 0
=> x(x - 9) + 4(x - 7) = 0
=> (x + 4)(x - 7) = 0
=> \(\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
6x2 - (2x + 5)(3x - 2) = -12
=> 6x2 - 6x2 + 4x - 15x + 10 = -12
=> -11x = -22
=> x = 2
x2 - 25 = 6x - 9
=> x2 - 25 - 6x + 9 = 0
=> x2 - 6x - 16 = 0
=> x2 - 8x + 2x - 16 = 0
=> x(x - 8) + 2(x - 8) = 0
=> (x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)
c) \(x^2-6x+11=0\)
\(\Leftrightarrow x^2-6x+9+2=0\)
\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)
Vậy phương trình vô nghiệm
d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)
a,b,d dễ mà bạn tự làm
c,x2-6x+11=0<=> x2-6x+9+2=0
<=>(x-3)2=-2(vô lý)
vậy pt vô nghiệm
(2x + 5 )2 + (4x+10)(3-x) + x2-6x+9=0
=>(2x+5)2_ 2(2x+5)(x-3) + (x-3)2=0
=>[(2x+5)-(x-3)]2 =0
=>(x+8)2=0
=> x+8=0
=> x=-8
1/ (5x+2)2+(6x-3y)2=0
Ta nhận thấy: (5x+2)2\(\ge\)0 và (6x-3y)2\(\ge\)0
Tổng của 2 số dương bằng 0 khi và chỉ khi cả 2 số đều bằng 0
=> \(\hept{\begin{cases}\left(5x+2\right)^2=0\\\left(6x-3y\right)^2=0\end{cases}}< =>\hept{\begin{cases}5x+2=0\\2x-y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{2}{5}\\y=2x=-\frac{4}{5}\end{cases}}\)
2/ Làm tương tự 1:
\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(3x-7y\right)^2=0\end{cases}}< =>\hept{\begin{cases}x+2=0\\3x-7y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-2\\y=\frac{3x}{7}=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow30xy-72x+55y-132-42x+16=0\)
\(\Leftrightarrow30xy-72x+55y-42x=0-16+132\)
........................................ Bạn tự làm tiếp nhé!!!