K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

-1,347143094 nha bạn

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

25 tháng 3 2020

a, x( x - 1) = x ( x + 2)

<=> x2 - x = x2 + 2x

<=>  x2 - x - x2 - 2x = 0

<=> -3x = 0

<=> x = 0

b, tương tự câu a

c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)        

\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)

\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)

=> 6x - 6 = 16 - x + 2

<=> 6x + x = 16 + 2 + 6

<=> 7x = 24

<=> x=\(\frac{24}{7}\)

Các câu còn lại làm tương tự

27 tháng 2 2020

1. \(\frac{3x-7}{5}=\frac{2x-1}{3}\)

<=> 3(3x-7)=5(2x-1)

<=> 9x-21=10x-5

<=> -21+5=10x-9x

<=> x=-16

2. \(\frac{3x-7}{2}+\frac{2x-1}{3}=-16\)

<=> \(\frac{3\left(3x-7\right)}{6}+\frac{2\left(2x-1\right)}{6}=\frac{-96}{6}\)

=> 9x-21+4x-2=-96

<=> 13x-23=-96

<=> 13x=-73

<=> x=\(\frac{-73}{13}\)

3. \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)

<=> \(\frac{15x}{15}-\frac{5\left(x+1\right)}{15}=\frac{3\left(2x+1\right)}{15}\)

=> 15x-5x-5=6x+3

<=> 15x-5x-6x=3+5

<=> 4x=8

<=> x=2

4. \(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5-\left(5-2x\right)}{6}\)

<=>\(\frac{7-3x}{12}+\frac{9}{12}=\frac{24\left(x-2\right)}{12}+\frac{2\left[5-\left(5-2x\right)\right]}{12}\)

=> 7-3x+9=24x-48+4x

<=> -3x-24x-4x=-48-7

<=> -31x=-55

<=> x= \(\frac{55}{31}\)

5. \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

<=> \(\frac{7\left(2x-1\right)}{21}-\frac{3\left(5x+2\right)}{21}=\frac{21\left(x+13\right)}{21}\)

=> 14x-7-15x-6=21x+273

<=> 14x-15x-21x=273+7+6

<=> -22x=286

<=> x= -13

27 tháng 2 2020

a/\(\Leftrightarrow3\left(3x-7\right)=5\left(2x-1\right)\Leftrightarrow9x-21=10x-5\Leftrightarrow x=-16\)

b/\(\Leftrightarrow\frac{9x-21+4x-2}{6}=-16\)\(\Leftrightarrow13x-23=-96\Leftrightarrow x=x=-\frac{73}{13}\)

c/\(\Leftrightarrow\frac{3x-x+1}{3}-\frac{2x+1}{5}=0\Leftrightarrow\left(2x+1\right)\left(\frac{1}{3}-\frac{1}{5}\right)=0\Leftrightarrow x=-\frac{1}{2}\)

ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)

\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)

\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)

\(15-20x+6x-12=0\)

\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn 

22 tháng 3 2020

a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)

=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)

=> \(6x-3-5x+10-x-7=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)

=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)

=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)

=> \(3x+9-2x+2-x-5-6=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)

=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)

=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)

=> \(4x+20+3x+36-5x+10-2x-66=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .