Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
\(\left|x+x+...x\right|+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=100x\)
\(\left|99x\right|+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\left|99x\right|+\left(\frac{1}{1}-\frac{1}{100}\right)=100x\)
\(\left|99x\right|+\frac{99}{100}=100x\)
Sau đó tự biến đổi nha! Mik chỉ giải tới đó thôi vì mới lớp 6 à!
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|=100x\)
có :
\(\left|x+\frac{1}{1\cdot2}\right|;\left|x+\frac{1}{2\cdot3}\right|;\left|x+\frac{1}{3\cdot4}\right|;...;\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge\frac{0}{100}\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\)
\(=x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+x+\frac{1}{3\cdot4}+...+x+\frac{1}{99\cdot100}\)
bước này tự lm tp
a, \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Rightarrow\frac{1}{2^x}+\frac{1}{2^x}\cdot\frac{1}{16}=17\)
\(\Rightarrow\frac{1}{2^x}\left(1+\frac{1}{16}\right)=17\)
\(\Rightarrow\frac{1}{2^x}\cdot\frac{17}{16}=17\)
\(\Rightarrow\frac{1}{2^x}=17:\frac{17}{16}=\frac{1}{16}=\frac{1}{2^4}\)
=> x = 4
b, Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....;\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow99x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=100x\)
\(\Rightarrow100x-99x=1-\frac{1}{100}\)
\(\Rightarrow x=\frac{99}{100}\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)
\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(50x=1-\frac{1}{100}\)
\(50x=\frac{99}{100}\)
\(x=\frac{99}{5000}\)
Do \(\left|a\right|\ge0\forall a\) nên:
\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)
\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)
Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)
\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)
\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)
các giá trị tuyệt đối trên có tổng lớn hơn hoặc bằng 0(>=0)
=>100x>=0
=>x>=0 =>x+1/(1.2) >0 ;x+1/(2.3)>0;x+1/(3.4);.....;x+1/(99.100)>0
=> ta có thể phá dấu giá trị tuyệt đối
=>100x=x+x+...+x(có 99. x)+(1/(1.2)+1/(2.3)+..+1/(99.100))
=>100x=99x+99/100
=>x=99/100
Ta có :
\(\begin{cases}\left|x+\frac{1}{1.2}\right|\ge0\\\left|x+\frac{1}{2.3}\right|\ge0\\...\\\left|x+\frac{1}{99.100}\right|\ge0\end{cases}\)\(\left(\forall x\right)\)
\(\Rightarrow100x>0\)
=> x > 0
=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+....+\left|x+\frac{1}{99.100}\right|\)
\(=x+\frac{1}{1.2}+x+\frac{1}{2.3}+.....+x+\frac{1}{99.100}=100x\)
\(\Rightarrow100x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=0\)
Dễ thấy VT \(\ne\)VP
=> \(x\in\varnothing\)
Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;...;\left|x+\frac{1}{99.100}\right|\ge0\)
=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)
=> \(100x\ge0\Rightarrow x\ge0\)
=> \(\left|x+\frac{1}{1.2}\right|=\left(x+\frac{1}{1.2}\right);\left|x+\frac{1}{2.3}\right|=\left(x+\frac{1}{2.3}\right);...;\left|x+\frac{1}{99.100}\right|=\left(x+\frac{1}{99.100}\right)\)=> \(\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+...+\left(x+\frac{1}{99.100}\right)=100x\)
=> 99x + \(\frac{99}{100}\) = 100x
=> x = \(\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{75}{76}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{75}{76}\)
\(\frac{1}{1}-\frac{1}{x+1}=\frac{75}{76}\)
\(\frac{1}{x+1}=1-\frac{75}{76}\)
\(\frac{1}{x+1}=\frac{1}{76}\)
\(\Rightarrow x+1=76\)
\(x=75\)
vậy \(x=75\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)
\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)
\(\Rightarrow99x+1+2+3+...+99=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow-x=-4950\)
\(\Rightarrow x=4950\)
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)
\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)
\(\Rightarrow50x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)
\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
tu lam
\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)
\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow x=4950\)(t/m đk x > = 0)
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)
\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)
Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)
\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)
\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))