K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

a) \(y^3+1=\left(y+1\right)\left(y^2-xy+1\right)\) đa thức này có 1 nghiệm =-1 => x=-1

b) \(y^2+1+5-5=y^2+1>0\)=> đa thức này vô nghiệm <=> k có x

5 tháng 4 2017

a, cho f(x) = \(3^2\)-12X = 0

               => X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.

b, đề chưa rõ k mình cái nha =)

5 tháng 4 2017

a, f(x)=\(3^2\) -12x=0

=>9=12x

=>x=\(\frac{3}{4}\)

b,f(1)=a+b=-2   (1)

f(2)=2a+b=0    (2)

Từ (1) và (2)

=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2

a=2

=>a+b=0

=>b=-4

6 tháng 8 2020

a) f(x) = 2x - 10 = 0

<=> 2x = 10

<=> x = 5

b) thay x = -1 vào đa thức, ta có:

g(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = 0

g(-1) = -a + b - c + d = 0

g(-1) = -a - c = -b - d

g(-1) = a + c = b + d (đpcm)

6 tháng 8 2020

a) f(x) có nghiệm <=> 2x - 10 = 0

                              <=> 2x = 10

                              <=> x = 5

b) g(x) = ax3 + bx2 + cx + d

x = -1 là nghiệm của g(x) 

=> g(-1) = a(-1)3 + b(-1)2 + c(-1) + d = 0

=> g(-1) = -a + b - c + d = 0

=> g(-1) = -a - c = -b - d 

=> g(-1) = a + b = b + d 

=> đpcm 

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

4 tháng 4 2018

\(a)\) Ta có : 

\(x^2+x=0\)

\(\Leftrightarrow\)\(x\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)

\(b)\) Ta có : 

\(\left|x\right|\ge0\)

\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)

Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm ) 

Chúc bạn học tốt ~ 

4 tháng 4 2018

1/a/Cho x^2+x=0

               x(x+1)=0

=>x=0 hoặc x+1=0

                       x=-1

Vậy nghiệm của H(x) là 0;-1

b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0

Vậy Q(x) vô nghiệm

2/P(x)=ax^2+5x-3

  P(12)=a.12^2+5.12-3=0

              a.144+60-3=0

                144a=-57

                  a=-57:144

                  a=-19/48