\(\dfrac{1}{2019}:2017.x\) = \(-\dfrac{1}{2017}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

\(\dfrac{1}{2019}:2017.x=-\dfrac{1}{2017}\)

\(\dfrac{1}{2019.2017}x=-\dfrac{1}{2017}\)

x=\(-\dfrac{1}{2017}:\dfrac{1}{2019.2017}\)=-2019

Vậy x=-2019

19 tháng 11 2018

2017 . x = \(\dfrac{1}{2019}:\left(\dfrac{-1}{2017}\right)\)

2017 . x = \(\dfrac{1}{2019}.\left(-2017\right)\)

2017 . x = \(-\dfrac{2017}{2019}\)

x = \(-\dfrac{2017}{2019}:2017\)

x = \(-\dfrac{2017}{2019}.\dfrac{1}{2017}\)

x = \(\dfrac{-1}{2019}\)

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

14 tháng 12 2017

Ta có: \(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}=\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\)

\(\Rightarrow\left(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}\right)-\left(\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\right)=0\)

\(\Rightarrow\dfrac{x+1}{2017}+\dfrac{x+1}{2018}-\dfrac{x+1}{2019}-\dfrac{x+1}{2020}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}\right)=0\)

\(\dfrac{1}{2017}>\dfrac{1}{2018}>\dfrac{1}{2019}>\dfrac{1}{2020}>0\) nên

\(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}>0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

14 tháng 12 2017

x=-1

24 tháng 6 2017

Bài 1:

a, \(\dfrac{x+5}{x}=\dfrac{4}{3}\)

\(\Rightarrow3x+15=4x\\ \Rightarrow4x-3x=15\\ \Rightarrow x=15\)

b, \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

\(\Rightarrow\left(x-20\right).\left(x+70\right)=\left(x+40\right)\left(x-10\right)\)

\(\Rightarrow x^2+70x-20x-1400=x^2-10x+40x-400\)

\(\Rightarrow x^2-x^2+70x-20x+10x-40x=-400+1400\)

\(\Rightarrow20x=1000\Rightarrow x=50\)

c, \(4^x=\dfrac{1.2.3.....31}{4.6.8.....64}\)

\(\Rightarrow4^x=\dfrac{1}{2.2.2.2.....2.2.64}\) (có 30 số 2)

\(\Rightarrow4^x=\dfrac{1}{2^{30}.4^3}\Rightarrow4^x=\dfrac{1}{4^{15}.4^3}\)

\(\Rightarrow4^x=\dfrac{1}{4^{18}}\)

\(\Rightarrow4^x=4^{-18}\)

\(4\ne-1;4\ne0;4\ne1\) nên \(x=-18\)

Chúc bạn học tốt!!!

24 tháng 6 2017

a , \(\dfrac{x+5}{x}=\dfrac{4}{3}\Leftrightarrow3\left(x+5\right)=4x\)

<=> 3x+15=4x

<=> x= 15

b , \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

<=> \(\dfrac{x-10}{x-10}-\dfrac{10}{x-10}=\dfrac{x+70}{x+70}-\dfrac{30}{x+70}\)

<=> \(1-\dfrac{10}{x-10}=1-\dfrac{30}{x+70}\)

<=> \(\dfrac{10}{x-10}=\dfrac{30}{x+70}\Leftrightarrow\dfrac{1}{x-10}=\dfrac{3}{x+70}\)

<=> (x+70)=3(x-10)

<=> x+70 = 3x-30

<=> 100=2x

<=> x= 50

14 tháng 6 2017

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)

\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

Giải tương tự câu a ta được \(x=-2018\)

14 tháng 6 2017

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)

\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)

\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)

\(\Leftrightarrow16471x+16471=8910x+8910\)

\(\Leftrightarrow16471x-8910x=8910-16471\)

\(\Leftrightarrow7561x=-7561\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)

\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)

\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)

\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)

\(\Leftrightarrow8124479x=-16395198622\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2017\)

P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)

=>x+2019=0

=>x=-2019

4 tháng 8 2017

\(A=\left|2x-\dfrac{1}{3}\right|+1007\)

\(\left|2x-\dfrac{1}{3}\right|\ge0\)

\(\Rightarrow\left|2x-\dfrac{1}{3}\right|+1007\ge1007\)

Dấu "=" xảy ra khi:

\(\left|2x-\dfrac{1}{3}\right|=0\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\)

\(\Rightarrow MIN_A=1007\) khi \(x=\dfrac{1}{6}\)

B tương tự

\(C=\left|2018-x\right|+\left|2017-x\right|\)

\(C=\left|2018-x\right|+\left|x-2017\right|\)

Áp dụng BĐT:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow C\ge\left|2018-x+x-2017\right|\)

\(C\ge1\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2018-x\ge0\Rightarrow x\le2018\\x-2017\ge0\Rightarrow x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}2018-x< 0\Rightarrow x>2018\\x-2017< 0\Rightarrow x< 2017\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow2017\le x\le2018\)

D tương tự

11 tháng 2 2018

a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)

\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)

\(\Leftrightarrow x=\dfrac{19}{4}\)

11 tháng 2 2018

Với mọi \(x\in R\)

\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)

với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)

\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)

17 tháng 8 2017

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(1\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Thay vào tính

20 tháng 8 2017

tks bn rất nhìu nha