Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x+y=2\) ⇒ \(\left(x+y\right)^2=4\text{⇒}xy=\dfrac{4-20}{2}=-8\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(20+8\right)=56\)
\(b.5m-2n=30\text{⇒}\left(5m-2n\right)^2=900\text{⇒}-20mn=900-1200\text{⇒}mn=15\)
\(a.A=-x^2-4x+15=-\left(x^2+4x+4\right)+19=-\left(x+2\right)^2+19\le19\)\(\Rightarrow A_{MAX}=19."="\Leftrightarrow x=-2\)
\(b.B=-x^2-4x-y^2+2y=-x^2-4x-4-y^2+2y-1+5=-\left(x+2\right)^2-\left(y-1\right)^2+5\ge5\)
\(\Rightarrow B_{MAX}=5."="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
\(B=a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab\\ C=a^5+b^5\\ =\left(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\right)-5ab\left(a^3+2a^2b+2ab^3+b^3\right)\\ =\left(a+b\right)^5-5ab\left[\left(a+b\right)^3-ab\left(a+b\right)\right]\)
Bây giờ bạn chỉ cần thay số lại rồi tính thôi
\(a.2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow2x^2+x^2-3x^2-4x+6x+3x+2+9+6=0\)
\(\Leftrightarrow5x+17=0\)
\(\Leftrightarrow x=-\dfrac{17}{5}\)
KL.............
\(b.\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)
\(\Leftrightarrow x^2-x^2+4x-2x-2x+4+6-1=0\)
\(\Leftrightarrow9=0\left(vôly\right)\)
KL..................
\(c.TươngTự\)
\(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left[\left(x-y\right)^2-1^2\right]+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1+3\right)\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)