K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow x^3+2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)

\(x^2+x+1\ne0\forall x\)

nên x+2=0

hay x=-2

Vậy: x=-2

b) Ta có: \(x^3-12x^2+48x-72=0\)

\(\Leftrightarrow x^3-6x^2-6x^2+36x+12x-72=0\)

\(\Leftrightarrow x^2\left(x-6\right)-6x\left(x-6\right)+12\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-6x+12\right)=0\)

\(x^2-6x+12\ne0\forall x\)

nên x-6=0

hay x=6

Vậy: x=6

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

27 tháng 9 2020

a) \(3x^3-12x=0\)

=> \(3x\left(x^2-4\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)

=> \(x^2\left(x-3\right)-4x+12=0\)

=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)

=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)

=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)

d) \(x^2-4x-21=0\)

=> \(x^2+3x-7x-21=0\)

=> \(x\left(x+3\right)-7\left(x+3\right)=0\)

=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (x + 1)(3x - 10) = 0

=> x = -1 hoặc x = 10/3

27 tháng 9 2020

a) \(3x^3-12x=0\)

\(\Leftrightarrow3x\left(x^2-4\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)

27 tháng 9 2020

Ta có : 3x3 - 12x = 0

=> 3x(x2 - 4) = 0

=> x(x - 2)(x + 2) = 0

=> \(x\in\left\{0;2;-2\right\}\)

b) x2(x - 3) + 12 - 4x = 0

=> x2(x - 3) - 4(x - 3) = 0

=> (x2 - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)

Vậy \(x\in\left\{-2;2;3\right\}\)

c) (3x - 1)2 - (2x - 3)2 = 0

=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0

=> (x + 2)(5x - 4) = 0

=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)

Vậy \(x\in\left\{-2;0,8\right\}\)

d) x2 - 4x - 21 = 0

=> x2 - 7x + 3x - 21 = 0

=> x(x - 7) + 3(x - 7) = 0

=> (x + 3)(x - 7) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)

Vậy \(x\in\left\{-3;7\right\}\)

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (3x - 10)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)

Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

6 tháng 9 2016

a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)

b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)

29 tháng 7 2017

c. \(8x^3-12x^2+6x-1=0\)

\(\Rightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow x=\frac{1}{2}\)

26 tháng 11 2015

a/ => 3x(x2 - 4) = 0

=> 3x = 0 => x = 0

hoặc x2 - 4 = 0 => x2 = 4 => x = 2 hoặc x = -2

Vậy x = 0 ; x = 2 ; x = -2

b/ => (x - 3)(x - 3 - 3 + x2) = 0

=> (x - 3) (x2 + x - 6) = 0 

=> (x - 3) (x2 - 2x + 3x - 6) = 0 

=> (x - 3) [x(x - 2) + 3(x - 2)] = 0

=> (x - 3)(x - 2)(x + 3) = 0

=> x - 3 = 0 => x = 3 

hoặc x - 2 = 0 => x = 2 

hoặc x + 3 = 0 => x = -3

Vậy x = 3 ; x = 2 ; x =-3

a: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

=>x+1=0

hay x=-1

c: \(x^2\left(x^2+2\right)-x^2-2=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

7 tháng 12 2015

a) 3x^3-12x=0

3x(x^2-4)=0

3x(x-2)(x+2)=0

suy ra 3x=0       suy ra x=0

           x-2=0               x=2

           x+2=0              x= -2

b) (x-3)^2-(x-3)(3-x)^2=0

(x-3)^2-(x-3)(x-3)^2=0

(x-3)^2(1-x+3)=0

(x-3)^2(4-x)=0

suy ra x-3=0  suy ra x=3

          4-x=0             x=4

a) và b) đã nhé bạn

31 tháng 12 2017

Bài 1:

a) x2 + 5x = 0

⇔ x(x + 5) = 0

\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x-0\\x=-5\end{matrix}\right.\)

b) (12x3 - 8x) : x - 4x(3x - 1) = 0

⇔ 12x2 - 8 - 12x2 + 4x = 0

⇔ 4x - 8 = 0

⇔ 4x = 8

⇔ x = 2

Bài 2:

\(P=\dfrac{x^2-12x+36}{2x^2-72}\)

\(=\dfrac{\left(x-6\right)^2}{2\left(x^2-6^2\right)}\)

\(=\dfrac{\left(x-6\right)^2}{2\left(x-6\right)\left(x+6\right)}\)

\(=\dfrac{x-6}{2\left(x+6\right)}\)

31 tháng 12 2017

Bài 1:

a,\(x^2+5x=0\)

\(x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy...

b,Cái dấu ở giữa \(x^3\) với 8 là trừ hay nhân vậy?