Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) (3a+4b)3+(3a-4b)3-48a2b2
=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2
=54a3+288ab2-48a2b2
=2a(27a2+144b2-24ab)
b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3
=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3
=16x3+25x2-y2+12xy2
=x2(16x+25)-y2(1-12x)
Bài 2 :
\(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
b)\(x^3-4x^2+3x=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)
c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn
d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)
\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)
\(\Leftrightarrow27x^3-54x^2-27x=0\)
\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
#H
\(1.x^3+2x+x^2=x\left(x^2+x+2\right)\)
\(2.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
\(3.-3x^3-5x^2+8x=-3x^3+3x^2-8x^2+8x\)
\(=-3x^2\left(x-1\right)-8x\left(x-1\right)=\left(3x^2+8x\right)\left(1-x\right)\)
\(=x\left(3x+8\right)\left(1-x\right)\)
\(4.x^2+4x-5=x^2-x+5x-5=\left(x-1\right)\left(x+5\right)\)
\(5.6x^2-3x-3=6x^2-6x+3x-3=3\left(x-1\right)\left(2x+1\right)\)
\(6.3x^2-2x-5=3x^2+3x-5x-5=\left(x+1\right)\left(3x-5\right)\)
\(8.x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)\(=\left(x+2y\right)\left(x-y-2\right)\)
\(9.x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
\(10.x^2-y^2+6x+9=\left(x+3-y\right)\left(x+3+y\right)\)
a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)
\(\Leftrightarrow14x=0\)
\(\Leftrightarrow x=0\)
Vậy pt có nghiệm duy nhất x = 0.
b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)
c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)
d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)
\(\Leftrightarrow41-10x=1\)
\(\Leftrightarrow-10x=40\)
\(\Leftrightarrow x=-4\)
Vậy pt có nghiệm duy nhất x = -4.
e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)
\(\Leftrightarrow8x=-13\)
\(\Leftrightarrow x=-\frac{13}{8}\)
Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)
a ) \(5x^2\left(2x-3\right)+\left(2x^2+3x+3\right)\left(3-2x\right)=6x^3-9x^2\)
\(\Rightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)=3x^2\left(2x-3\right)\)
\(\Rightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)-3x^2\cdot\left(2x-3\right)=0\)
\(\Rightarrow\left(5x^2-2x^2-3x-3-2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\left(3x^2-5x\right)\left(2x-3\right)=0\)
\(\Rightarrow x\left(3x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow\) +) x = 0
+) 3x - 5 = 0\(\Rightarrow x=\dfrac{5}{3}\)
+ )\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)
vậy x \(=0;x=\dfrac{3}{2};x=\dfrac{5}{3}\)
b) \(8x^3+12x^2+6x+7-3\left(2x+1\right)^2=6\)
\(\Rightarrow\left(2x\right)^3+3.2x.1+3.2x.1^2+1^2+6-3\left(2x+1\right)^2-6=0\)
\(\Rightarrow\left(2x+1\right)^3-3\left(2x+1\right)^2=0\)
\(\Rightarrow\left(2x+1\right)^2\left(2x+1-3\right)=0\)
\(\Rightarrow\left(2x+1\right)^2\left(2x-2\right)=0\Rightarrow\left(2x+1\right)^2\left(x-1\right)2=0\)
\(\Rightarrow\) +)\(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow x=\dfrac{-1}{2}\)
+) x - 1 = 0 \(\Rightarrow x=1\)
Vậy x = \(\dfrac{-1}{2}\) hoặc x = 1