K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

<=> \(\left(x^3+3x^2a+3xa^2+a^3\right)-3bc\left(x+a\right)+b^3+c^3=0\)<=>\(\left(x+a\right)^3-3bc\left(x+a\right)+\left(b+c\right)^3-3bc\left(b+c\right)=0\)<=>

\(\left(x+a\right)^3+\left(b+c\right)^3-3bc\left(x+a+b+c\right)=0\)<=>

(x+a+b+c)[ (x+a)2 +(b+c)2 -(x+a)(b+c) -3bc]=0 <=> x+a+b+c=0 hoặc x2 + x(2a-b-c) + a2+ (b+c)2 -a(b+c)-3bc=0

<=> x= -a-b-c hoặc x2 + x(2a-b-c) + a2+ (b+c)2 -a(b+c)-3bc=0 (1)

\(\Delta=\left(2a-b-c\right)^2-4\left[a^2+\left(b+c\right)^2-a\left(b+c\right)-3bc\right]=\)\(4a^2+\left(b+c\right)^2-4a\left(b+c\right)-4a^2-4\left(b+c\right)^2+4a\left(b+c\right)\)\(+12bc=12bc-3\left(b+c\right)^2=-3\left(b-c\right)^2\le0\)

để (1) có nghiệm thì b-c=0 => \(\Delta=0\) => x = \(-\frac{2a-b-c}{2}=-a-b\)

kết luận

với b-c \(\ne0\) pt có 2 nghiệm x=-a-b-c

b-c=0 pt có 2 nghiệm x=-a-b-c và x=-a-b

16 tháng 7 2017

b. Sử dụng các hằng đẳng thức

 \(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)

và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Do (a - b) + (b - c) + (c - a) =  0 nên áp dụng hđt  \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:

\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

16 tháng 7 2017

Bài 1 :

\(b,ax^2+3ax+9=a^2\) 

\(\Leftrightarrow a^2x+3ax+9-a^2=0\) 

\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\) 

\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)

Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\) 

\(\Leftrightarrow ax=a-3\) 

Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\) 

8 tháng 8 2015

Chia đa thức, ta được

\(P\left(x\right)=Q\left(x\right).\left(x+m\right)+3\left(a-m^2\right)x^2+3\left(b-am\right)x+c-bm\)

Để P(x) chia hết cho Q(x) thì 

\(a-m^2=0;\text{ }b-am=0;\text{ }c-bm=0\)

\(\Leftrightarrow a=m^2;\text{ }b=am=m^3;\text{ }c=bm=m^4\)

Vậy \(a=m^2;\text{ }b=m^3;\text{ }c=m^4\)